Типы задач продуктового аналитика



за время работы, общения с коллегами, друзьями выявил для себя основные таски, которые приходится выполнять продуктовому аналитику каждую неделю



1. создание дашбордов. Как ты видишь срез продукта, как донесешь другим людям полную картину, что происходит в бизнесе. Сделать так, чтобы это очень легко считывалось - искусство.



2. доработка / фикс / поддержка дашбордов. Если аналитик это заметил (с помощью алертинга, например, - класс), если бизнес - не особо. Возникают вопросы к доверию данных, актуализации отчетности, люди могут меньше обращаться к ней из-за наличия таких косяков.



3. работа с архитектурой данных. Здесь речь и про разработку витрин (не только для отчетности), но и для решения других задач. Сюда можно включить и разметку для пользовательского приложения (в зависимости от внердяемой фичи) и занесения метрик в абшницу и feature store для ML расчетов (вариаций куча).



4. оценка и приоритизация. Планы, приоритизация задач (в рамках скоринга задач, в каком порядке должны подступаться продуктово к решению задач), трекшн (как должен двигаться бизнес в определенном срезе), что может быть в будущем. К этому также может относиться расчет юнит-экономики, когда мы ищем определенные точки роста в бизнесе (новые идеи).



5*. прогнозирование. Тут речь про построение планов на основе различных методов прогнозирования (временные ряды), не грубая прикидка, а хороший прогноз (etna, arima, sarimax, prophet etc)



6. выгрузки / адхоки. Включает в себя разные вопросы, которые могут решаться за 1 этап (просто выгрузка из БД без каких-то фокусов). Сегменты пользователей для рассылки / коммуникации, ответ на вопрос, одна чиселка в ответе, передать инфу другим аналитикам / командам и др.



7. исследования. Здесь обычно нет какой-то структуры, может быть по-разному. Исследования, когда можно взять готовые данные и ответить на вопрос - одно. А когда нужно их комбинировать между собой, ставить перед собой задачу декомпозиции и потихоньку приходить к ответу - другое. Пример: понять, почему в бизнес-юните такая маленькая конверсия на данном этапе?



8. эксперименты. Дизайн, запуск, валидация, мониторинг, завершение. Здесь можно посчитать еще и долгосрочный эффект*, либо, если эксперимент неудачный - сделать перезапуск



9. моделирование / оптимизация. Машинное обучение, оптимизация бизнес-процессов, автоматизация (в том числе и для настройки ETL, отдельным пунктом в дашборд не выводил, так как само собой разумеющееся). Может быть и аплифт-моделирование (ближе к маркетинговой аналитике) и различные приколы с эмбеддингами (в аналитике поиска).



Что-то забыл? Делитесь в комментариях! Какую задачу вам приходится решать чаще всего?