🔍 Causal Inference (ч. 1)



Этот пост нужен для того, чтобы базово вникнуть для чего используется



Итак, Causal Inference - это процесс поиска причинно-следственных связей. Он позволяет нам понять, насколько X влияет на Y. В статье от X5 объясняются основные техники, позволяющие оценить эффект. Как правило, они могут основываться и на простых методах по типу линейной регрессии. Вообще практически все в нашем мире можно объяснить с помощью линейной регрессии (true fact).



Зачем нам это может нужно, если есть A/B тесты?



1) Хочется оценить эффект от фичи, которая работает длительное время. Например, нужно оценить эффект от раскатки нового варианта онбординга на пользователей с момента запуска.



2) Мы не контролируем формирование групп. Это может быть применимо к оффлайн-экспериментам.



3) Не можем провести эксперимент по различным причинам. Например, по техническим или этическим, когда тест нужно держать очень долго



🤗 Самое важное, что нужно запомнить - это то, что мы пытаемся в большинстве случаев понять, как себя будет вести определенный treatment после вмешательства (intervention). Некоторые методы подразумевают построение временных рядов (байес и не только), прогнозы и на основе этого определение эффекта, а где-то достаточно посмотреть на то, как вела себя метрика до и как ведет она себя после вмешательства.



🆎 Представляем, что мы хотели провести A/B тест, но по какой-то из причин, этого не сделали. Помните, в чем основная задача? Это определить будет ли значимым эффект при рандомном семплировании определенных групп. Проводя эксперимент в классическом понимании, мы имеем тест, контроль (на кого-то раскатили новый функционал, на кого-то нет), мы применяем. Далее, ссылаясь на то, что наблюдения независимые (или зависимые и мы применяем поправки), сравниваем группы, получаем эффект



В задачах Causal Inference может быть несколько вариантов решения задач.



1. Определить то, как ведет себя метрика на препериоде и оценить то, как после запуска воздействия поменялось поведение метрики (по сравнению с прогнозом). Например, Diff-n-diff или Causal Impact (Counterfactuals analysis)



2. В задачах, где у нас нет контроля, сопоставить пользователей по похожести и оценивать эффект так, как будто мы проводим тест. PSM, Instrumental variables и различные вариации (Квази-эксперименты)



Ставьте реакции, пишите комментарии. В следующих постах я опишу то, какие методы бывают более подробно и разберем более подробно то, как они работают.