Прорыв в квантовом ИИ: увеличение параметров улучшает производительность



Исследовательская группа из Лос-Аламосской национальной лаборатории продемонстрировала, что добавление дополнительных параметров, или "перепараметризация", повышает производительность в квантовом машинном обучении - технике, превосходящей способности классических компьютеров. Это открытие поможет оптимизировать процесс обучения в квантовых нейронных сетях и улучшить их работу в практических квантовых приложениях.



- С помощью перепараметризации исследователи смогли предотвратить затухание процесса обучения, проблему, столкнулась с которой модель при достижении подоптимальной конфигурации.

- Новое исследование устанавливает теоретический подход для предсказания критического числа параметров, при котором модель квантового машинного обучения становится перепараметризованной.

- После достижения определенной критической точки, добавление параметров провоцирует значительное улучшение производительности сети и упрощает ее обучение.





https://scitechdaily.com/a-leap-in-performance-new-breakthrough-boosts-quantum-ai/