Про современные сетки, косты на их обучение и альтернативу стандарным методам обучения



Не буду даже писать про то почему обучение больших сеток это важно. В инфополе каждого думаю 4-5 постов, подводящих к этой мысли.

Но обучение современных сеток сопряжено с нюансом.

Чтобы обучить GPT-3 на 175 миллиардов параметров нужно было потратить 5 млн долларов (3,640 petaflop/s-days ).

Чтобы обучить GPT-4 на более 1.76 триллионов параметров и больше 100 миллионов долларов

По слухам в GPT-5 будет 10-20 триллионов параментров. Мы не знаем, сколько на это потратит денег OpenAI, но я думаю больше 2-х миллиардов.



Собственно к проблемам

Кроме OpenAI свои большие модели сделали-делают Google, Microsoft, Amazon, Meta, NVIDIA (Megatron, 500 млрд параметров). Конечно же еще индусы, китайцы ну и россияне. В мире сейчас 20 триллионов денежной массы циркулирует. Если все будет идти в том же темпе (гиганты будут обучать сетки сопоставимые с OpenAI и число параметров прогрессировать с той же скоростью) вероятно уже в этом году компании уже могут потратить суммарно больше 100 млрд долларов. Что на минутку уже около 0.5 процента всей циркулирующей денежной масссы в мире (!!). И это только начало и это мы еще молчим про инференс этих моделей.



Почему это мне надо знать

Я думаю индустрия может еще сильно поменяться с возникновением и распространением новых классов моделей. Именно поэтому полезно (а не только весело) учить математику вширь, чтобы видеть немного глубже стандартной картинки из обучения мл.



Пример с Intel.

В 2019 году выручка intel была 72 bln, а nvidia 12 bln. В 2023 году выручка intel была 54 bln, а nvidia 27 bln. Динамика сильная даже если не брать оценки, а взять просто выручку, факт. Почему так происходит? Потому что мир быстро меняется и сейчас большой спрос на GPU и TPU, и nvidia смогла приспобится быстрее. И еще начать делать свои ИИ решения сверху. В целом вероятно что с ростом NVIDIA произойдет то же самое и найдется компания, которая ее обгонит, но nvidia быстро итерируется и делает альтернативные технологии. Забавно что Intel тоже в свое время в 90-е на поворотах обогнал много конкурентов, среди которых была даже моторола. History repeats itself.



Как обучается backprop  и как стоимость обучения зависит от числа параметров

Все chatpt сейчас построены на способе обучения backprop. Проблема в том что коректировка весов происходит с перемножением матриц и число вычислений растет квадратично с увеличением параметров. Это в модельном кейсе. Конечно сейчас много ресурса тратится на оптимизации - архитектуры и обучения (часть весов превращаются в нолики единички, часть морозиться и тд), оптимизации железа и его потребления энергии (TPU больше подходит к матричным вычислениям и ест при этом меньше энергии), но тренд остается трендом - сети следующего поколения в основном умнеют с помощью увеличения параметров в 10 раз, что ведет за собой увеличение денег на обучение в 20.



Какие есть альтернативы

Хинтон, который написал нашумевшую статью (а вы видели еще статью с 16к цитирований) собственно про backprop в 1986 году активно критикует свой же собственный метод в 2024. Предлагает капсульные сети, которые я даже как-то раньше тут разбирала. Правда он пока не работает, но очень интересный.

Глобально инновации могут быть на трех уровнях - алгоритмическом (делаем инновации в способе обучения как капсулы), железа - проектируем новые способы вычислений (например BrainChip — с нейроморфным процессором Akida, который имитирует мозг человека и может считать сети на девайсе), сервисном (компании которые помогают менеджерить модели, например Bright Computing который NVIDIA купила в 2022 году), и даже физическом (я недавно познакомилась с профессором теорфизики из Кэмбриджа, который делает очень интересный способ на уровне именно физических процессов перестроить обучение)

Есть еще много разной альтернативы, но уже не влезает пост. Полайкайте, если хотите пост про альтернативы, тема очень будоражащая.