#wawconf Алишер Умаров. Аналитик 2.0 - Шестирукий Шива или как выжить в современных реалиях с ИИ.
Основной тезис: ИИ может стать помощником: переписывать текст в заданном формате, например, OpenAI; разбираться в коде или настройках конфигураций, писать SQL-запросы, рисовать диаграммы и так далее.
Это несложно, и сильно повышает производительность, есть замеры. До 70% на шаблонных задачах. 50 в среднем экономии. Быстрое кросс-ревью. Ускорение *3 при неполной или отсутствующей документации: проект начинался, сделали как-то поговори об этом с разработчиками и узнай... Как оценивал эффективность? У него было несколько команд, в разных областях. Была оценка, плюс опыт аудита - для этого у него была моделька для оценки артефактов. И он оценивал изменения в работе команды до и после.
В конце Байкин добавил кейс. Нужно было разобраться с HR. Попросил ИИ написать типовые процессы, детализировать, придумать KPI. Послал, HR-директор оценил: о, какие хорошие!
И в ответ Алишер добавил использование: прослушай встречу 2 часа, расскажи что важное. Потом спросить про пояснения. Провалидируй требования.
Что нужно для этого? Главное - надо уметь ставить техническую задачу, чтобы понял ИИ. Он не домысливает, вернее, часто домысливает неверно. Очевидная вещь в SQL - синтаксис, ограничения, что хотите. Русский язык технически сложен, сложнее английского или испанского, там много ловушек неоднозначности - надо разжевывать, писать структурно. Это полезно не только для ИИ.
Риски ИИ известны: невалидированные результаты, неправильная постановка задачи, ограниченность данных обучения (ChatGPT знает состояние 21 года).
Зачем это надо? Аналитик может стать core-участникам команды.
Во всех вакансиях пишут полотенца текста, по которым аналитик должен понимать вообще все. Почему работодатель требует все это? Потому что часто источник требований - имеющаяся система. Посмотреть на базу данных, посмотреть на формы, код и так далее. И это надо уметь. Можно с помощью ИИ - и он реально поможет.
А вот умение говорить со всеми интересантами - это пока самому, отдельная компетенция.
Как делать, чтобы не утекало? Сбер и ВТБ - стали делать свои модельки. Еще можно обезличивать - как датасеты, ТЗ тоже можно обезличивать. И можно обезличивать код, если его надо прочитать. Еще можно договориться, что поднимаем в своем контуре.
Основной тезис: ИИ может стать помощником: переписывать текст в заданном формате, например, OpenAI; разбираться в коде или настройках конфигураций, писать SQL-запросы, рисовать диаграммы и так далее.
Это несложно, и сильно повышает производительность, есть замеры. До 70% на шаблонных задачах. 50 в среднем экономии. Быстрое кросс-ревью. Ускорение *3 при неполной или отсутствующей документации: проект начинался, сделали как-то поговори об этом с разработчиками и узнай... Как оценивал эффективность? У него было несколько команд, в разных областях. Была оценка, плюс опыт аудита - для этого у него была моделька для оценки артефактов. И он оценивал изменения в работе команды до и после.
В конце Байкин добавил кейс. Нужно было разобраться с HR. Попросил ИИ написать типовые процессы, детализировать, придумать KPI. Послал, HR-директор оценил: о, какие хорошие!
И в ответ Алишер добавил использование: прослушай встречу 2 часа, расскажи что важное. Потом спросить про пояснения. Провалидируй требования.
Что нужно для этого? Главное - надо уметь ставить техническую задачу, чтобы понял ИИ. Он не домысливает, вернее, часто домысливает неверно. Очевидная вещь в SQL - синтаксис, ограничения, что хотите. Русский язык технически сложен, сложнее английского или испанского, там много ловушек неоднозначности - надо разжевывать, писать структурно. Это полезно не только для ИИ.
Риски ИИ известны: невалидированные результаты, неправильная постановка задачи, ограниченность данных обучения (ChatGPT знает состояние 21 года).
Зачем это надо? Аналитик может стать core-участникам команды.
Во всех вакансиях пишут полотенца текста, по которым аналитик должен понимать вообще все. Почему работодатель требует все это? Потому что часто источник требований - имеющаяся система. Посмотреть на базу данных, посмотреть на формы, код и так далее. И это надо уметь. Можно с помощью ИИ - и он реально поможет.
А вот умение говорить со всеми интересантами - это пока самому, отдельная компетенция.
Как делать, чтобы не утекало? Сбер и ВТБ - стали делать свои модельки. Еще можно обезличивать - как датасеты, ТЗ тоже можно обезличивать. И можно обезличивать код, если его надо прочитать. Еще можно договориться, что поднимаем в своем контуре.