Разбираем нейросети по частям: как работает градиентный спуск



Нейросети сейчас везде, и даже цифровому гуманитарию от них не скрыться. Word2vec при помощи нейросети кодирует смысл слов (вот тут мы объясняли, как), а новые модели ELMO и BERT даже научились учитывать, что слова появляются в разных контекстах и от этого из смысл тоже может меняться. Этот текст — про то, что значит «обучить» нейросеть и кто «подбирает веса» отдельных нейронов.



Градиентный спуск ищет ближайшую к случайно выбранной точке впадину на графике функции. А поскольку в нейросетях функции очень сложные и локальных впадин-минимумов на них много, такой подход должен быть неэффективен в вопросах обучения нейросети и всегда натыкаться на локальные минимумы.



Тем не менее градиентный спуск как метод обучения почему-то работает хорошо. В 2015 группа ученых из Курантовского института математических наук в Нью-Йорке нашла этому объяснение, показав, что большая часть локальных минимумов функций потерь, используемых в нейросетях, располагается близко к глобальному минимуму. Эта близость и позволяет натренированным при помощи градиентного спуска нейросетям справляться с задачами достаточно эффективно.



https://sysblok.ru/knowhow/razbiraem-nejroseti-po-chastjam-kak-rabotaet-gradientnyj-spusk/