Физика языковых моделей: серия статей от FAIR



В прошлом году не успели поделиться с вами разбором полезной работы от исследователя лаборатории FAIR (Facebook AI Research) Цзэюань Аллен-Чжу. Исправляемся! В двухчасовом докладе и серии статей описаны свойства языковых моделей и приведено множество инсайтов.



Самые интересные идеи:



— LLM способна выучивать графы причинно-следственных связей для решения сложных задач. (Пример задачи: «В школе 10 аудиторий, в каждой по 15 парт, за каждой партой — два стула. Сколько всего стульев в школе?»). Если задача более запутанная, со сложным графом зависимостей, модель может использовать топологическую сортировку, чтобы понять порядок вычислений. Для повышения точности этого процесса предлагается обучать модель на дополнительных синтетических задачах. Описанный подход называется Level-1 reasoning.



— Перед генерацией первого токена LLM заранее просчитывает все промежуточные данные для построения ответа. Иногда модель допускает ошибки: вычисляет лишние данные или пытается оперировать тем, что ещё не вычислено. Этот процесс называется Level-2 reasoning.



— LLM способна определить, где произошла ошибка при генерации ответа. Для этого можно обучить Linear Probe, который с вероятностью около 99% предскажет место ошибки. Автор также предлагает добавить в обучающую выборку примеры Сhain-of-Thought, где модель не только ошибается, но и исправляет свои ошибки. Чем больше таких данных, тем выше становится качество модели.



— Ещё одна синтетическая задача для обучения модели — определение принадлежности последовательности грамматике Хомского. Задача формулируется так: даны правила раскрытия токенов (например: 5 → 43, 4 → 22, 3 → 11), и нужно понять, можно ли с их помощью сгенерировать последовательность 1122 (можно) или 1212 (нельзя). Оказалось, GPT не только успешно обучается на такую задачу, но и умеет определять, из каких нетерминальных токенов были сгенерированы подпоследовательности. При этом BERT, хотя и справляется с задачей, не оперирует понятием нетерминальных токенов.



Дополнительные инсайты:



— Претрейн должен содержать QA и другие задачи извлечения знаний (Knowledge Extraction, NE). Если только файнтюн содержит NE, модель будет плохо обобщаться на подобные задачи.

— Ошибки в данных на претрейне снижают качество, и стадия файнтюнинга не исправляет ситуацию.

— Аугментации заметно улучшают обобщающую способность модели. Это неудивительно, ведь они работают с перестановкой предложений, переформулировкой, стилистикой, переводами.

— Модели типа BERT работают хуже, чем GPT-архитектуры. Это объясняется авторегрессионной природой вторых, которая позволяет эффективнее генерировать и предсказывать последовательности (см. пункт о грамматике Хомского).

— Использование Сhain-of-Thought улучшает точность модели.

— GatedFFN работает хуже, чем обычный FFN.

— Универсальный закон: эффективность хранения информации (выученной из тренировочного датасета) в хорошо обученной LLM равна двум битам на один параметр модели. Этот закон действует для широкого диапазона размеров LLM.



Разбор подготовил Александр Шишеня



Душный NLP



Meta признана экстремистской организацией, а Facebook и Instagram запрещены на территории РФ