📊 Как оценивать LLM: бенчмарки [Ч.2]
В прошлой части данной темы мы подробно разобрали метрики, с помощью которых можно оценивать LLM. Сегодня поговорим про оценку через бенчмарки.
❗️Бенчмарк - это набор тестовых вопросов для оценки конкретного навыка модели.
Как правило, он работает следующим образом:
1. Берут некоторый стандартный набор запросов к LLM
2. Собирают ответы модели
3. С помощью асессоров/либо автоматической метрикой получают некоторую оценку качества модели
🗑Виды бенчмарков:
1️⃣ Открытые: создаются, как эталоны, для оценки конкретного навыка модели, что позволяет сравнить производительность любой LLM. Зачастую под данными бенчмарками понимаются: MMLU, GSM8K, HumanEval и т.д.
Проблема таких бенчмарков в том, что вся тестовая выборка хранится в открытом доступе (где-нибудь на GitHub), что зачастую приводит к утечке данных в train-датасеты.
ℹ️GSM8K - содержит математические задачи уровня начальной школы; MMLU - создан для проверки уровня фактических знаний LLM по гуманитарным наукам, социальным наукам, истории и даже право; HumanEval - содержит задачи по программированию
2️⃣ Закрытые: имеют аналогичную цель, однако, их особенность в закрытом тестовом наборе данных, которые LLM в процессе обучения не видели. Сюда могут входить: MT-Bench, SQuAD, RE-Bench и т.д.
3️⃣ Собственные (доменные): не всегда доступные бенчмарки пригодны для вашей задачи, поэтому зачастую приходится формировать свои тестовые примеры и способы оценки.
📚Дополнительная литература:
- Простая и очень полезная статья по бенчмаркам от команды Яндекса. Здесь же можно почитать про недостатки различных бенчмарков и этого подхода в целом
- Материалы из прошлой статьи
- Большой набор описаний наиболее популярных бенчмарков
- Статья про самые популярные LLM-бенчмарки
- Статья "Полный гид по бенчмаркам LLM"
Обязательно ставьте ❤️ и 🔥 под постом!
Пишите свои комментарии 🙂
В прошлой части данной темы мы подробно разобрали метрики, с помощью которых можно оценивать LLM. Сегодня поговорим про оценку через бенчмарки.
❗️Бенчмарк - это набор тестовых вопросов для оценки конкретного навыка модели.
Как правило, он работает следующим образом:
1. Берут некоторый стандартный набор запросов к LLM
2. Собирают ответы модели
3. С помощью асессоров/либо автоматической метрикой получают некоторую оценку качества модели
🗑Виды бенчмарков:
1️⃣ Открытые: создаются, как эталоны, для оценки конкретного навыка модели, что позволяет сравнить производительность любой LLM. Зачастую под данными бенчмарками понимаются: MMLU, GSM8K, HumanEval и т.д.
Проблема таких бенчмарков в том, что вся тестовая выборка хранится в открытом доступе (где-нибудь на GitHub), что зачастую приводит к утечке данных в train-датасеты.
ℹ️GSM8K - содержит математические задачи уровня начальной школы; MMLU - создан для проверки уровня фактических знаний LLM по гуманитарным наукам, социальным наукам, истории и даже право; HumanEval - содержит задачи по программированию
2️⃣ Закрытые: имеют аналогичную цель, однако, их особенность в закрытом тестовом наборе данных, которые LLM в процессе обучения не видели. Сюда могут входить: MT-Bench, SQuAD, RE-Bench и т.д.
3️⃣ Собственные (доменные): не всегда доступные бенчмарки пригодны для вашей задачи, поэтому зачастую приходится формировать свои тестовые примеры и способы оценки.
📚Дополнительная литература:
- Простая и очень полезная статья по бенчмаркам от команды Яндекса. Здесь же можно почитать про недостатки различных бенчмарков и этого подхода в целом
- Материалы из прошлой статьи
- Большой набор описаний наиболее популярных бенчмарков
- Статья про самые популярные LLM-бенчмарки
- Статья "Полный гид по бенчмаркам LLM"
Обязательно ставьте ❤️ и 🔥 под постом!
Пишите свои комментарии 🙂