Машинное обучение стремительно развивается, как и использование нами «умных» технологий. Так что если вы ищете востребованную профессию, то получение навыков работы с искусственным интеллектом — хорошее решение.
Итак, вот восемь советов, которым вы можете следовать уже сейчас.
1️⃣ Поймите, что представляет из себя машинное обучение
Этот пункт может показаться очевидным, но очень важно иметь представление о том, что такое машинное обучение, понимать базовые математические основы.
2️⃣ Будьте любопытны
Машинное обучение и ИИ — вещи современные, и в будущем они будут продолжать развиваться. Поэтому наличие здорового чувства любопытства и любви к обучению важно для изучения новых технологий и того, что с ними происходит. Читайте актуальные статьи, записывайтесь на онлайн-курсы и пробуйте новое. Быть успешным = быть любопытным.
3️⃣ Переводите бизнес-задачи на математический язык
Машинное обучение — это профессия для тех, кто мыслит логически. Она сочетает в себе технологии, математику и бизнес-анализ. Конечно, вы должны сосредоточиться на первых двух пунктах, но вам не достичь успеха без понимания проблем бизнеса и умения перевести их на понятный вам язык математики.
4️⃣ Будьте командным игроком
Раньше машинное обучение ассоциировалось с образом одинокого программиста, окруженного компьютерами. Однако в наши дни над проектами работает не один человек, а целая команда. Если хотите достичь успеха, будьте готовы стать ее частью.
5️⃣ В идеале, нужно иметь опыт в анализе данных
Если вы аналитик данных, то следующий логичный шаг в вашей карьере — это машинное обучение. В этой сфере неотъемлемым является аналитическое мышление, то есть умение думать о причинах и последствиях, понимать, что работает хорошо, а что не очень.
6️⃣ Изучите Python и пользуйтесь библиотеками для машинного обучения
Всем начинающим настоятельно рекомендуем как можно скорее начать изучение Python и библиотек Scikit-learn и Tensor Flow.
7️⃣ Пройдите онлайн-курсы
На данном этапе ваша цель — получение практических навыков в машинном обучении. Запишитесь на онлайн-курсы, посвященные программированию и практике в машинном обучении.
8️⃣ Узнайте больше о сфере, в которой вы хотите работать
Машинное обучение, как и любая сфера, не существует в вакууме. Каждая ее отрасль уникальна. Так что чем больше вы сможете узнать о той отрасли, в которой мечтаете работать, тем лучше.
Нужно некоторое время, чтобы понять, чем вы собираетесь заниматься. На это уйдет несколько месяцев или даже лет, поэтому начните прямо сейчас.
Источник
Итак, вот восемь советов, которым вы можете следовать уже сейчас.
1️⃣ Поймите, что представляет из себя машинное обучение
Этот пункт может показаться очевидным, но очень важно иметь представление о том, что такое машинное обучение, понимать базовые математические основы.
2️⃣ Будьте любопытны
Машинное обучение и ИИ — вещи современные, и в будущем они будут продолжать развиваться. Поэтому наличие здорового чувства любопытства и любви к обучению важно для изучения новых технологий и того, что с ними происходит. Читайте актуальные статьи, записывайтесь на онлайн-курсы и пробуйте новое. Быть успешным = быть любопытным.
3️⃣ Переводите бизнес-задачи на математический язык
Машинное обучение — это профессия для тех, кто мыслит логически. Она сочетает в себе технологии, математику и бизнес-анализ. Конечно, вы должны сосредоточиться на первых двух пунктах, но вам не достичь успеха без понимания проблем бизнеса и умения перевести их на понятный вам язык математики.
4️⃣ Будьте командным игроком
Раньше машинное обучение ассоциировалось с образом одинокого программиста, окруженного компьютерами. Однако в наши дни над проектами работает не один человек, а целая команда. Если хотите достичь успеха, будьте готовы стать ее частью.
5️⃣ В идеале, нужно иметь опыт в анализе данных
Если вы аналитик данных, то следующий логичный шаг в вашей карьере — это машинное обучение. В этой сфере неотъемлемым является аналитическое мышление, то есть умение думать о причинах и последствиях, понимать, что работает хорошо, а что не очень.
6️⃣ Изучите Python и пользуйтесь библиотеками для машинного обучения
Всем начинающим настоятельно рекомендуем как можно скорее начать изучение Python и библиотек Scikit-learn и Tensor Flow.
7️⃣ Пройдите онлайн-курсы
На данном этапе ваша цель — получение практических навыков в машинном обучении. Запишитесь на онлайн-курсы, посвященные программированию и практике в машинном обучении.
8️⃣ Узнайте больше о сфере, в которой вы хотите работать
Машинное обучение, как и любая сфера, не существует в вакууме. Каждая ее отрасль уникальна. Так что чем больше вы сможете узнать о той отрасли, в которой мечтаете работать, тем лучше.
Нужно некоторое время, чтобы понять, чем вы собираетесь заниматься. На это уйдет несколько месяцев или даже лет, поэтому начните прямо сейчас.
Источник