πŸš€ @SBERLOGABIG Π²Π΅Π±ΠΈΠ½Π°Ρ€ ΠΏΠΎ Π΄Π°Ρ‚Π° сайнс:

πŸ‘¨β€πŸ”¬ Π”ΠΌΠΈΡ‚Ρ€ΠΈΠΉ Кобак Β«Contrastive and neighbor embedding methods for data visualizationΒ» ( ΠšΠΎΠ½Ρ‚Ρ€Π°ΡΡ‚Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹

Π±Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΡ… сосСдСй для Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π΄Π°Π½Π½Ρ‹Ρ… )

⌚️ Π§Π΅Ρ‚Π²Π΅Ρ€Π³ 25 мая, 18.00 ΠΏΠΎ МосквС



Add to Google Calendar



In recent years, neighbor embedding methods like t-SNE and UMAP have become widely used across several application fields, in particular in single-cell biology. They are also widely used for visualizing large collections of documents and/or images used to train modern deep learning architectures such as large language models or diffusion models. Given this academic and public attention, it is very important to understand possibilities, shortcomings, and trade-offs of neighbor embedding methods. I am going to present our recent work on

the attraction-repulsion spectrum of neighbor embeddings and the involved trade-offs. I am also going to explain how neighbor embeddings are related to contrastive learning, a popular framework for self-supervised learning of image data. This will lead to our recent work on contrastive visualizations of image datasets. In the second part of the talk, I will present our ongoing work on visualization of scientific literature, in particular biomedical research papers from the PubMed library.



О Π΄ΠΎΠΊΠ»Π°Π΄Ρ‡ΠΈΠΊΠ΅: Π”ΠΌΠΈΡ‚Ρ€ΠΈΠΉ Кобак - Π΄Π°Ρ‚Π° сайнтист Π² TΓΌbingen University, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π²Π΅Π΄ΡƒΡ‰ΠΈΡ… спСциалистов Π² ΠΌΠΈΡ€Π΅ ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ сниТСния размСрности Π² Π°Π½Π°Π»ΠΈΠ·Π΅ Π΄Π°Π½Π½Ρ‹Ρ….



Бсылка Π½Π° Π·ΡƒΠΌ Π±ΡƒΠ΄Π΅Ρ‚ Π² https://t.me/sberlogabig ΠΏΠ΅Ρ€Π΅Π΄ Π΄ΠΎΠΊΠ»Π°Π΄ΠΎΠΌ.

Π’ΠΈΠ΄Π΅ΠΎ записи: https://www.youtube.com/c/SciBerloga



πŸ“– Presentation: https://t.me/sberlogasci/5757

πŸ“Ή Video: https://youtu.be/yKHtbWHP4Fg