
Богдан Печёнкин - Bag-of-tricks того, как сделать ваш ML-пайплайн более reliable
3-4 июня - Секция Reliable ML на Data Fest 2023
Во время Data Fest 2023 на нашей секции Reliable ML, Богдан Печёнкин, Senior ML Engineer в BrandsGoDigital, автор симулятора ML-инженера на karpov.courses и тг-канала @bogdanisssimo, расскажет основные приёмы и инструменты в арсенале ML инженера, которые помогают застраховать ML проект от неожиданных происшествий на разных этапах его жизненного цикла, и сэкономит вам десятки часов поиска источника проблем.
Машинное обучение у многих ассоциируется чёрным ящиком: такие-то данные на входе, такие-то предсказания на выходе, а внутри – что-то загадочное, неконтролируемое, непредсказуемое, а следовательно, ненадёжное (non-reliable).
Это сильно контрастирует с тем, как на машинное обучение смотрят опытные ML гребцы: для них "код, написанный другим кодом" (так называемое Software 2.0) – это, в первую очередь, про "код". Как и рядовой детерминированный код, веса нейросети и деревья бустинга можно и нужно покрывать тестами, дебажить, мониторить – достаточно лишь знать, как.
Богдан также расскажет о практическом курсе-интенсиве по теме надёжности ML-решений на платформе Educative, который он разработал совместно с Арсением Кравченко, чтобы развенчать миф, о том, что "машинное обучение невозможно держать под контролем" и вооружить вас конкретным набором приёмов карате.
Регистрация на мероприятие тут.
Расписание будет опубликовано на следующей неделе.
Ваш @Reliable ML
#анонс #tech #reliable_ml #mlops #datafest2023
3-4 июня - Секция Reliable ML на Data Fest 2023
Во время Data Fest 2023 на нашей секции Reliable ML, Богдан Печёнкин, Senior ML Engineer в BrandsGoDigital, автор симулятора ML-инженера на karpov.courses и тг-канала @bogdanisssimo, расскажет основные приёмы и инструменты в арсенале ML инженера, которые помогают застраховать ML проект от неожиданных происшествий на разных этапах его жизненного цикла, и сэкономит вам десятки часов поиска источника проблем.
Машинное обучение у многих ассоциируется чёрным ящиком: такие-то данные на входе, такие-то предсказания на выходе, а внутри – что-то загадочное, неконтролируемое, непредсказуемое, а следовательно, ненадёжное (non-reliable).
Это сильно контрастирует с тем, как на машинное обучение смотрят опытные ML гребцы: для них "код, написанный другим кодом" (так называемое Software 2.0) – это, в первую очередь, про "код". Как и рядовой детерминированный код, веса нейросети и деревья бустинга можно и нужно покрывать тестами, дебажить, мониторить – достаточно лишь знать, как.
Богдан также расскажет о практическом курсе-интенсиве по теме надёжности ML-решений на платформе Educative, который он разработал совместно с Арсением Кравченко, чтобы развенчать миф, о том, что "машинное обучение невозможно держать под контролем" и вооружить вас конкретным набором приёмов карате.
Регистрация на мероприятие тут.
Расписание будет опубликовано на следующей неделе.
Ваш @Reliable ML
#анонс #tech #reliable_ml #mlops #datafest2023