Generative AI & Research Integrity. Часть 1. (продолжение)

#science #ml #chatgpt #fake_text_detection #research_integrity



Самой собой, LLM-ки начинают выводить проблему на новый уровень. Недавно была громкая история с испанцем Rafael Luque, который не долго думая плодил статьи с chatGPT и продавал соавторство в них. Видать, неплохо заработал. Он “всего лишь” потерял должность в университете Кордобы, при этом его аффилиация с РУДН остается, а также появляются новые. Полагаю, персонаж продолжит заниматься доходным бизнесом. Кстати, поймали Рафу не детектором chatGPT-контента (такие детекторы обсудим в третьей части), а проще: среди признаков – нерелевантные ссылки на другие работы, а также “tortured phrases” (не буду раздувать пост, про tortured phrases отдельно расскажу) – когда вместо “image recognition” вдруг “image acknowledgement”, а вместо “quantum gates”, по заветам нашего лучшего друга Сиража Раваля – ”quantum doors”.



Пожалуй, самые громкие истории вокруг research Integrity связаны с манипуляциями изображений – подтасовками western blots (молекулярные биологи так определяют в образце белки). Есть “сыщики” типа Elizabeth Bik с орлиным взглядом, умеющим находить пересекающиеся куски изображений и, в целом, визуальный плагиат. Элизабет лично обнаружила манипуляции в более 10к статей. Любители computer vision, тут есть где разгуляться, это еще в целом не решенная проблема. Некоторые инструменты есть (Proofig, ImageTwin), но они далеки от идеала. И понятно, что Stable Diffusion также выводит на новый уровень и манипуляции, и борьбу с ними. Гонка вооружений.



Всяческих манипуляций, конечно же, еще множество. Во второй части расскажу про наш опыт детекции ML-генерированного контента (на основе этого поста). В третьей поговорим про chatGPT-детекторы в духе этого поста.



Версия с заголовками и картинками.