​​Исследователи из Торонто разработали метод машинного обучения для прогнозирования деменции, который определяет приоритеты конкретных переменных при анализе данных, и способен изолировать искажающие факторы, например возраст. Учёные достигли до 100% точности в классификации подтипов афазии, и 82% в случаях с деменцией. Разработку можно применять и в других исследованиях, где нужно исключить факторы, которые могут искажать результат.