Нейросеть обучили распознавать птиц по пению даже при наличии фонового шума
В последние годы автономные записывающие устройства (Autonomous recording unit или ARU) упростили запись тысяч часов звуков в лесах. Эти данные используют для лучшего понимания работы экосистем, отслеживания поведения животных и птиц, их количества, определения критических мест обитания и т.д. Например, если в лесу много дятлов, то в нем полно сухостоя.
Однако изучение аудиоданных вручную занимает огромное количество времени, а специалисты по пению птиц встречаются не часто. Помочь в этом может искусственный интеллект. Занимающееся ИИ подразделение Google представило нейросеть, способную быстро и с высокой точностью классифицировать пернатых по пению.
Исходный код есть на GitHub.
#интересное #результаты_работы
В последние годы автономные записывающие устройства (Autonomous recording unit или ARU) упростили запись тысяч часов звуков в лесах. Эти данные используют для лучшего понимания работы экосистем, отслеживания поведения животных и птиц, их количества, определения критических мест обитания и т.д. Например, если в лесу много дятлов, то в нем полно сухостоя.
Однако изучение аудиоданных вручную занимает огромное количество времени, а специалисты по пению птиц встречаются не часто. Помочь в этом может искусственный интеллект. Занимающееся ИИ подразделение Google представило нейросеть, способную быстро и с высокой точностью классифицировать пернатых по пению.
Исходный код есть на GitHub.
#интересное #результаты_работы