Николай Валиотти:
"В основном мы работаем с различными digital и мобильными стартапами, помогаем им выстроить end-to-end аналитику.
Другими словами, мы работаем со спектром задач от проектирования хранилища / озера данных, построения процессов инжиниринга данных до построения отчетности и иногда даже некоторых моделей машинного обучения.
Персонально я успел поработать в ряде крупных организаций и занимался анализом данных с разнообразным стеком решений, однако в последние годы перед стартом своей компании работал в стартапе, который уже тогда начал работать с так называемым modern data stack. Меня это невероятно увлекло и вдохновило на то, чтобы и другие компании могли компетентно использовать современные облачные решения и получать максимальную пользу от собственных данных.
Мы в некотором смысле стартап (по духу), хотя, конечно, больше развиваемся как традиционная консалтинговая компания. У нас небольшой штат сотрудников и соответствующих ролей, о которых речь пойдет дальше.
Поскольку работаем параллельно с несколькими проектами одновременно бОльшая часть команд кросс-функциональна, что означает, что в каждом проекте есть выделенный сотрудник, который лидирует по проекту, а другие коллеги функционально помогают ему в достижении поставленной цели.
Среди наших сотрудников имеются:
Data Engineer - работы с построением архитектуры хранилища, среди инструментов Kafka, Airflow, среди СУБД: BigQuery, Redshift, Clickhouse, Redshift, Vertica, MySQL, разумеется, SQL и Pythoh.
Analytics Engineer - работы с инструментов dbt, построение моделей данных в Looker, работа с Python для обработки данных, естественно, SQL
2x Data Analyst - мы используем ряд инструментов в зависимости от потребностей и возможностей заказчика: Tableau, Looker, Redash, PowerBI и Metabase, ребята умеют работать в этих инструментах и естественно используют SQL. Ряд задач, например, построение классификационных моделей мы строим с использованием Python, используем Jupyter, в некоторых случаях Collab.
2x Junior Data Analyst - помогают более старшим аналитикам и решают более маленькие кусочки задач с тем же стеком технологий.
В будущем планирую выстраивать организационную структуру, поскольку найм сотрудников горизонтально все-таки невозможен бесконечно и система из более 7 человек будет работать неэффективно"
"В основном мы работаем с различными digital и мобильными стартапами, помогаем им выстроить end-to-end аналитику.
Другими словами, мы работаем со спектром задач от проектирования хранилища / озера данных, построения процессов инжиниринга данных до построения отчетности и иногда даже некоторых моделей машинного обучения.
Персонально я успел поработать в ряде крупных организаций и занимался анализом данных с разнообразным стеком решений, однако в последние годы перед стартом своей компании работал в стартапе, который уже тогда начал работать с так называемым modern data stack. Меня это невероятно увлекло и вдохновило на то, чтобы и другие компании могли компетентно использовать современные облачные решения и получать максимальную пользу от собственных данных.
Мы в некотором смысле стартап (по духу), хотя, конечно, больше развиваемся как традиционная консалтинговая компания. У нас небольшой штат сотрудников и соответствующих ролей, о которых речь пойдет дальше.
Поскольку работаем параллельно с несколькими проектами одновременно бОльшая часть команд кросс-функциональна, что означает, что в каждом проекте есть выделенный сотрудник, который лидирует по проекту, а другие коллеги функционально помогают ему в достижении поставленной цели.
Среди наших сотрудников имеются:
Data Engineer - работы с построением архитектуры хранилища, среди инструментов Kafka, Airflow, среди СУБД: BigQuery, Redshift, Clickhouse, Redshift, Vertica, MySQL, разумеется, SQL и Pythoh.
Analytics Engineer - работы с инструментов dbt, построение моделей данных в Looker, работа с Python для обработки данных, естественно, SQL
2x Data Analyst - мы используем ряд инструментов в зависимости от потребностей и возможностей заказчика: Tableau, Looker, Redash, PowerBI и Metabase, ребята умеют работать в этих инструментах и естественно используют SQL. Ряд задач, например, построение классификационных моделей мы строим с использованием Python, используем Jupyter, в некоторых случаях Collab.
2x Junior Data Analyst - помогают более старшим аналитикам и решают более маленькие кусочки задач с тем же стеком технологий.
В будущем планирую выстраивать организационную структуру, поскольку найм сотрудников горизонтально все-таки невозможен бесконечно и система из более 7 человек будет работать неэффективно"