Самое сложно при построении аналитического решения, это не построить решение, а сделать так, чтобы его использовали. Можно наделать много дашбордов, моделей и витрин данных, но никто не будет их использовать.



Когда мы, что-то строим, мы думаем - “какая полезная информация, как она будет полезна бизнесу”. Но это лишь у нас в голове. Это называется bias, мы рисуем оптимистичную картинку. Но я не про bias, сейчас, хотя считаю, что знание типо bias и вообще, что это такое, это очень важно. Про это хорошо написано в книге “Думай медленно, решай быстро”.



Пост, про необходимость использовании метаданных о данных или по простому - Data /Bi/Analytics portal. То есть это место, куда может зайти бизнес пользователь, и ввести в поисковой строке название показателя или измерения и найти, нужный отчет или таблицу + логику трансформаций. А если в компании (крупной) используются многие решения, то нужно сделать универсальный портал, а это уже как отдельный проект. Самый главный критерий здесь - это избежать ручной работы - Copy Paste. Так как все очень быстро устаревает.



В комментариях люди могут поделиться про свои успешные или неуспешные кейсы.



А вот от взрослых компаний:

Democratizing Data at Airbnb

Metacat: Making Big Data Discoverable and Meaningful at Netflix

Databook: Turning Big Data into Knowledge with Metadata at Uber

Turning Metadata Into Insights with Databook

DataHub: Popular metadata architectures explained

The journey of metadata at PayPal

Nemo: Data discovery at Facebook