Статзначимость в А/В тестах: дополнительные вопросы (часть 3/3)



Я слышал, что p-value — это не вероятность нулевой гипотезы, что это значит?



Все верно, это известная бородатая ошибка при интерпретации p-value. P-value — это не вероятность нулевой гипотезы, а вероятность увидеть в тесте такой же «эффект» или больше, при условии справедливости нулевой гипотезы (т.е. когда эффекта на самом деле нет). От этого можно перейти к вероятности нулевой гипотезы, при условии наблюдаемого эффекта по теореме Байеса, если вдруг вы будете знать все нужные для формулы вероятности, но нужды в этом нет.



А еще я слышал, что нулевую гипотезу нельзя принять, о чем это?



В А/В тесте мы хотим отвергнуть нулевую гипотезу, посмотрев на фактические данные. Но можем не отвергнуть. Подтвердить нулевую гипотезу не можем: если нам не хватает свидетельств против чего-то, это еще не значит, что это что-то верно 🙂



Бытовая иллюстрация:

Старушка на лавочке у подъезда выбирает, как поприветствовать Васю. В качестве нулевой гипотезы она принимает утверждение, что Вася обычный парень. А в качестве альтернативы — что Вася наркоман. Чтобы выбрать доброжелательное или агрессивное приветствие, она оценивает, насколько Вася плохо выглядит сегодня. Если «еще терпимо», то заключает, что свидетельств против нулевой гипотезы не хватает и нужно приветствовать доброжелательно. В этом случае она, однако, не может быть уверена, что Вася не наркоман, т.е. принять нулевую гипотезу. Но как вдумчивая и образованная пожилая женщина, не спешит с выводами и собирает данные.



Везде выше постоянно говорилось о каком-то статистическом различии между результатами в группах А/В, которое либо есть, либо нет. А что это значит?



Вот здесь мы вступаем на территорию более сложных формулировок. Если объяснять это не на бытовом уровне, то вы сами выбираете смысл «статистического различия» при формулировке нулевой гипотезы и альтернативы. Например, если мы сравниваем средние чеки в группах А и В, то под «статистически неразличимыми» результатами мы можем иметь ввиду одинаковое матожидание среднего чека в группе А и в группе В. Это будет нулевой гипотезой. Альтернативой — различные матожидания. Есть критерии, которые в качестве нулевой гипотезы рассматривают совпадение медиан распределений или просто совпадение распределений.



А еще слышал что-то про множественную проверку гипотез? Это о чем?



Это о том, что если вы проверяете одновременно несколько гипотез на уровне значимости, скажем, 5% каждая (например, оцениваете эффект сразу и на средний чек, и на конверсию в покупку, и на конверсию в переход на страницу товара), то шанс ложного срабатывания теста хотя бы для одной гипотезы будет уже не 5%, а существенно больше. Есть разные способы учитывать этот эффект.



А всех, кто хочет погрузиться глубже (например, узнать, как быть, если наблюдения в А/В тесте зависимые, и причем здесь бакетное сэмплирование), а также познакомиться и с AB тестами, и с методами машинного обучения - приглашаю на наш курс «База ML»



#математика