Пример алгоритма ML, выводимого 3+ способами.



Возобновляю образовательно-развивательные посты. Рассказывать буду не как что-то работает, а интересные (мне 😂) факты про алгоритмы. Например, знали ли вы, что к логистической регрессии - простому, но очень популярному алгоритму машинного обучения, можно прийти как минимум тремя разными способами:



1️⃣ Просто рассмотрев бинарный линейный классификатор с логистическими потерями и каким-нибудь регуляризатором (или без него, но так обычно не делают).



2️⃣ Из соображений максимизации расстояния Кульбака-Лейблера между распределением, которое мы получаем для вероятности принадлежности к классу, и равномерным распределением.



3️⃣ Из соображений максимизации энтропии.



Все три варианта возникли исторически, в разные моменты к одному и тому же алгоритму приходили разные люди.



🖋️ Пример из моего опыта: в одной компании, где я работал, люди не имели академического образования по машинному обучению. И при этом построили свой аналог логистической регрессии, даже не зная про логистические потери — просто вручную придумали функцию потерь с нужными свойствами, гладко «сшив» экспоненту и прямую.



Спустя годы после этого, когда я рассказал авторам того алгоритма о логистической регрессии, они были приятно удивлены и обрадованы, что сами смогли изобрести то же самое.



Но вообще способов «вывести» логистическую регрессию гораздо больше, пишите в комментариях, кто какие еще знает :)



Подсказка: как минимум можно получить её и как байесовский классификатор