Три ошибки молодых AI-стартапов. Вопрос подписчика
Какое-то время я ревьюил стартапы перед тем, как им давали или не давали инвестиции (этот процесс называется due diligence, и в него входит как анализ бизнеса и его перспектив, так и техническое ревью). У многих стартапов повторялись одни и те же ошибки, перечислю их в порядке нарастания драматичности.
Первая — команда ничего не умеет. Популярная история: набирают смелых студентов или даже людей вообще без знаний. Основатель, который не понимает в технике, смотрит на их работу, радуется послушанию и выдаёт кривой результат за прорыв в AI. Денег поднять реально, но стабильный бизнес построить невозможно.
Вторая — отсутствие менторов. Скорее всего, стартап не потянет топового ML-спеца, они нынче дорогие. Но можно привлечь их как менторов: даже светила сферы порой согласны помочь. Мотивацией для ментора, помимо удовольствия от помощи людям, могут быть деньги, небольшая доля в компании или даже большое человеческое спасибо.
Третья проблема — это стандартный приговор стартапов с фаундерами-технарями. Стартап вряд ли взлетит, если вы делаете то, что интересно, а не то, на что есть спрос. Тут, понятное дело, есть две крайности. В одной вы делаете красивую пустышку, вроде компаний из Кремниевой долины, которые втупую штампуют обертки вокруг апишки ChatGPT. В другой вы тратите кучу времени на немонетизируемые исследования, надеясь, что рано или поздно они принесут успех.
Мораль: заботьтесь о прокачке команды и балансируйте между интересом и коммерцией. А лучше ищите их пересечение.
И пожалуйста, не делайте компанию по генерации промтов к ChatGPT. Ну пожалуйста!
#вопрос_подписчика
Какое-то время я ревьюил стартапы перед тем, как им давали или не давали инвестиции (этот процесс называется due diligence, и в него входит как анализ бизнеса и его перспектив, так и техническое ревью). У многих стартапов повторялись одни и те же ошибки, перечислю их в порядке нарастания драматичности.
Первая — команда ничего не умеет. Популярная история: набирают смелых студентов или даже людей вообще без знаний. Основатель, который не понимает в технике, смотрит на их работу, радуется послушанию и выдаёт кривой результат за прорыв в AI. Денег поднять реально, но стабильный бизнес построить невозможно.
Вторая — отсутствие менторов. Скорее всего, стартап не потянет топового ML-спеца, они нынче дорогие. Но можно привлечь их как менторов: даже светила сферы порой согласны помочь. Мотивацией для ментора, помимо удовольствия от помощи людям, могут быть деньги, небольшая доля в компании или даже большое человеческое спасибо.
Третья проблема — это стандартный приговор стартапов с фаундерами-технарями. Стартап вряд ли взлетит, если вы делаете то, что интересно, а не то, на что есть спрос. Тут, понятное дело, есть две крайности. В одной вы делаете красивую пустышку, вроде компаний из Кремниевой долины, которые втупую штампуют обертки вокруг апишки ChatGPT. В другой вы тратите кучу времени на немонетизируемые исследования, надеясь, что рано или поздно они принесут успех.
Мораль: заботьтесь о прокачке команды и балансируйте между интересом и коммерцией. А лучше ищите их пересечение.
#вопрос_подписчика