Обучиться Data Science «самому», без вузовских курсов, можно, но сложно
Курсов «Стань Data Scientist’ом за три месяца» с заманчивыми обещаниями о трудоустройстве и большом заработке довольно много. Грешат этим все: от GeekBrains и Skillbox до Яндекс Практикума(хотя, по моему субъективному мнению, коллеги из Яндекса работают наиболее деликатно и им за это от меня респект).
Нет ничего зазорного в курсах хоть на три месяца, хоть на три занятия.
Любой формат позволяет донести определённые знания, однако важно сохранять трезвость в оценке ценности подобных курсов.
Человек с хорошим техническим образованием из МГУ, МФТИ, ВШЭ, СПбГУ, ИТМО и других топовых вузов вполне в состоянии устроиться стажёром в data science и после вводного курса. Вряд ли в топовую компанию, но начать нарабатывать опыт уже можно.
Более того, полноценно проходить даже короткий курс необязательно — это лишь способ ускорить процесс. Если человек умеет программировать, читать документацию и изучать библиотеки, можно обойтись и без курса:
— решайте Kaggle.com, начиная с учебных соревнований
— читайте форумы соревнований,
— практикуйтесь в применении DS библиотек (sklearn, lightgbm, catboost, xgboost, pandas, polars, seaborn, pytorch, ambrosia)
— изучайте их документацию
Находите открытые материалы курсов по data science и разбирайте их самостоятельно. Знаю примеры людей, бегло изучающих семестровый курс из Стэнфорда за ночь. Не всем обязательно демонстрировать такую суперпроизводительность, да и почти любой человек после подобной учёбы многое забудет через неделю. Но вместе с практикой этот подход совершенно нормальный.
Ещё полезно через какое-то время изучить ту же тему в новом источнике. Интересующихся людей в целом всегда выделяет то, что им недостаточно прочитать одну книгу, решить задачу один раз, один раз понять, как всё устроено. Им интересно изучать вопрос с разных сторон снова и снова.
Однако нужно помнить, что без сильной базы по программированию и математике путь в Data Science может быть долгим. Это нормально. Главное — не останавливаться в изучении фундаментальных направлений. Если понравится процесс — вы его пройдёте, сами или с чьей-то помощью.
Курсов «Стань Data Scientist’ом за три месяца» с заманчивыми обещаниями о трудоустройстве и большом заработке довольно много. Грешат этим все: от GeekBrains и Skillbox до Яндекс Практикума
Нет ничего зазорного в курсах хоть на три месяца, хоть на три занятия.
Любой формат позволяет донести определённые знания, однако важно сохранять трезвость в оценке ценности подобных курсов.
Человек с хорошим техническим образованием из МГУ, МФТИ, ВШЭ, СПбГУ, ИТМО и других топовых вузов вполне в состоянии устроиться стажёром в data science и после вводного курса. Вряд ли в топовую компанию, но начать нарабатывать опыт уже можно.
Более того, полноценно проходить даже короткий курс необязательно — это лишь способ ускорить процесс. Если человек умеет программировать, читать документацию и изучать библиотеки, можно обойтись и без курса:
— решайте Kaggle.com, начиная с учебных соревнований
— читайте форумы соревнований,
— практикуйтесь в применении DS библиотек (sklearn, lightgbm, catboost, xgboost, pandas, polars, seaborn, pytorch, ambrosia)
— изучайте их документацию
Находите открытые материалы курсов по data science и разбирайте их самостоятельно. Знаю примеры людей, бегло изучающих семестровый курс из Стэнфорда за ночь. Не всем обязательно демонстрировать такую суперпроизводительность, да и почти любой человек после подобной учёбы многое забудет через неделю. Но вместе с практикой этот подход совершенно нормальный.
Ещё полезно через какое-то время изучить ту же тему в новом источнике. Интересующихся людей в целом всегда выделяет то, что им недостаточно прочитать одну книгу, решить задачу один раз, один раз понять, как всё устроено. Им интересно изучать вопрос с разных сторон снова и снова.
Однако нужно помнить, что без сильной базы по программированию и математике путь в Data Science может быть долгим. Это нормально. Главное — не останавливаться в изучении фундаментальных направлений. Если понравится процесс — вы его пройдёте, сами или с чьей-то помощью.