Два года CDO (часть 3)
В прошлый раз мы закончили на том, что технологические цели неплохо бы увязывать с пользой для бизнеса, и пора рассказать, как мы это делали.
Во-первых, мы выделили ряд платформ, которые могут сильно снизить Time2Market бизнесовых применений анализа данных. Это рекомендательная платформа, скоринговая, MLOps и DataOps платформы. Первые две уже вовсю используются для бизнесов МТС, а скоринговая - ещё и для работы с внешними заказчиками. В этих платформах есть определенные части, которые можно и нужно опенсорсить, я еще расскажу об этом подробнее. Также нужно иметь ввиду, что «платформа» - это сейчас слово-паразит, проникшее в стратегии многих компаний, и значить оно может разное. В нашем случае речь про набор применяемых техническими специалистами инструментов, разработанных для удобного использования вместе и существенного ускорения работы. Например, чтобы рекомендательную систему для нового сервиса можно было сделать командой из двух человек за пару недель, а не из 5-10 за полгода.
Во-вторых, мы не поддались искушению полностью упороться в развитие инфраструктуры, перекинув все силы с зарабатывания денег здесь и сейчас. На секундочку, KPI у многих членов команды завязаны на деньги, но ничего не стоило эту зависимость убрать и переиграть всё в чистое IT, бизнес очень даже открыт к экспериментам.
В итоге, уже в первый же год мы без увеличения общей численности команды удвоили (!) экономические эффекты от Big Data для бизнеса. И это при том, что мы параллельно вели разработку платформ, которые, разумеется, не дают свой эффект сразу. Помогла просто грамотная приоритизация задач и работа с командой. Многие провалы в прошлом были связаны с тем, что в нужном месте не оказывался нужный человек, и зная, «кто что потянет», можно сильно улучшить ситуацию.
Сейчас мы активно работаем над MLOps и DataOps платформами (многое уже есть, но работы тоже хватает), а также вовсю дальше внедряем рекомендательную и скоринговую. Причём скоринговая это не только про классические рисковые скоры, но и вообще про любые скоры или прогнозы на клиенте для задач бизнеса (будь то антифрод, отток или еще что-то). В октябре будут первые сравнения нашей рекомендательной платформы с рекомендациями от других вендоров, которые занимаются RecSys годами. Выиграем или нет - покажет эксперимент, но даже если нет, через год уже точно выиграем :)
В прошлый раз мы закончили на том, что технологические цели неплохо бы увязывать с пользой для бизнеса, и пора рассказать, как мы это делали.
Во-первых, мы выделили ряд платформ, которые могут сильно снизить Time2Market бизнесовых применений анализа данных. Это рекомендательная платформа, скоринговая, MLOps и DataOps платформы. Первые две уже вовсю используются для бизнесов МТС, а скоринговая - ещё и для работы с внешними заказчиками. В этих платформах есть определенные части, которые можно и нужно опенсорсить, я еще расскажу об этом подробнее. Также нужно иметь ввиду, что «платформа» - это сейчас слово-паразит, проникшее в стратегии многих компаний, и значить оно может разное. В нашем случае речь про набор применяемых техническими специалистами инструментов, разработанных для удобного использования вместе и существенного ускорения работы. Например, чтобы рекомендательную систему для нового сервиса можно было сделать командой из двух человек за пару недель, а не из 5-10 за полгода.
Во-вторых, мы не поддались искушению полностью упороться в развитие инфраструктуры, перекинув все силы с зарабатывания денег здесь и сейчас. На секундочку, KPI у многих членов команды завязаны на деньги, но ничего не стоило эту зависимость убрать и переиграть всё в чистое IT, бизнес очень даже открыт к экспериментам.
В итоге, уже в первый же год мы без увеличения общей численности команды удвоили (!) экономические эффекты от Big Data для бизнеса. И это при том, что мы параллельно вели разработку платформ, которые, разумеется, не дают свой эффект сразу. Помогла просто грамотная приоритизация задач и работа с командой. Многие провалы в прошлом были связаны с тем, что в нужном месте не оказывался нужный человек, и зная, «кто что потянет», можно сильно улучшить ситуацию.
Сейчас мы активно работаем над MLOps и DataOps платформами (многое уже есть, но работы тоже хватает), а также вовсю дальше внедряем рекомендательную и скоринговую. Причём скоринговая это не только про классические рисковые скоры, но и вообще про любые скоры или прогнозы на клиенте для задач бизнеса (будь то антифрод, отток или еще что-то). В октябре будут первые сравнения нашей рекомендательной платформы с рекомендациями от других вендоров, которые занимаются RecSys годами. Выиграем или нет - покажет эксперимент, но даже если нет, через год уже точно выиграем :)