Что опасного в многопоточке?

#новичкам



Монстры, морские чудовища, жуткие болезни... Все это снится разработчику, ломающему голову над проблемой в его многопоточном коде. Что же такого трудного для понимания и для отлавливания может произойти?



Одна из многих проблем - когерентность кэша. У нас есть много вычислительных юнитов. У каждого из них есть свой кэш. И все они шарят общее адресное пространство процесса. Кэши напрямую не связаны с другими вычислительными юнитами, только со своими(это про кэши низких уровней). В такой архитектуре нужно четко определить механизм, по которому изменения одного кэша станут видны другому ядру. Такие механизмы есть. Например, упрощенный вариант того, что сейчас есть - модель MESI. Непростая штука и мы пока не будем разбираться в деталях. Важно вот что: на процесс, охватывающий промежуток от изменения одной кэш линии до того, как эти изменения станут доступны другому ядру, тратится время. И это не атомарная операция! То есть нет такого, что при каждом изменении кэш линии информация об этом инциденте моментально доходит до других юнитов и они тут же первым приоритетом подгружают новое значение. Это очень неэффективно. Поэтому может случиться такая ситуация, при которой переменная в одном кэше процессора уже изменилась, а в другом кэше еще осталась ее старая копия, которая используется другим процессором. Это и есть одна из граней проблемы когерентности кэша.



Если с одной операцией-то тяжко, то еще более bizarre ситуация становится, когда мы начинаем рассматривать две связанных операции. Представим себе такую картину:



struct Class {

Class(int a, int b, int c) : x{a}, y{b}, z{c} {}

int x;

int y;

int z;

};



Class * shared;



void fun() {

shared = new Class{1, 2, 3};

}





Функция fun выполняется в каком-то потоке и и меняет значения переменной. Логично, что в начале выполняется создание объекта, а потом присвоение указателя. Но это актуально лишь для этого потока и так это видит соотвествующее ядро. Мы ведь в многопоточной среде, здесь убивают...

Может произойти так, что данные в другой процессор подтянутся в обратном порядке. То есть в начале появится инициализированный указатель, указывающий на какую-то память, а потом подтянется инфа об созданном на этой памяти объекте. Вот и получается, что этот другой поток может сделать проверку:



if (shared) 

// do smt with object



И код войдет в условие, потому что указатель ненулевой. Но память по этому указателю будет еще не инициализирована. А это, друзья, наше любимое UB.



И это в точности то, что может происходить с нашим беднягой синглтоном! Если вы думаете, что lock на мьютексе вас спасет, то нет, не спасет!



Да, лок подразумевает барьеры памяти и при unlock'e изменения флашатся. Но на незащищенном чтении-то они подтягиваются без барьеров! Это был небольшой спойлер для шарящих за барьеры. О них не сегодня.



Именно поэтому даже если мы все вместе обмажемся маслом и начнем бороться volatile и будем везде его пихать, то это все равно не поможет. Жонглирование указателями тоже. Тут проблема даже не в том, что компилятор как-то переставляет инструкции. Помимо всего прочего и сам процессор может менять местами инструкции для большей производительности. На такие штуки мы уже никак не влияем. Просто смиритесь с тем, что природа многопоточного мира такая и с этим надо уметь работать и решать такие проблемы.



Завтра как раз об этом и поговорим.



Be able to work in multitasking mode. Stay cool.



#concurrency #cppcore