Double-Checked Locking Pattern Classic

#опытным



Ядро идеи этого паттерна - тот факт, что решение из предыдущего поста неоптимально. Нам на самом деле нужно всего один раз взять замок для того, чтобы создать объект и потом не возвращаться к этом шагу. Если кто-то увидит, что наш указатель - ненулевой, то он даже не будет пытаться что-то делать и сразу вернется из функции.



Поэтому в паттерне блокировки с двойной проверкой, нулёвость указателя проверяется перед локом. Таким образом мы откидываем просадку производительности для подавляющего большинства вызова геттера синглтона. Однако у нас теперь остается узкое место - момент инициализации. И вот где появляется вторая проверка(всю обертку уже не буду писать для краткости).



static Singleton* Singleton::instance() {

if (inst_ptr == NULL) {

Lock lock;

if (inst_ptr == NULL) {

inst_ptr = new Singleton;

}

}

return inst_ptr;

}





Таким образом, даже если 2 потока войдут в первое условие и первый из них проинициализирует указатель, то второй поток будет вынужден проверить еще раз, можно ли ему создать объект. И грустный вернется из геттера, потому что ему нельзя.



Это классическая реализация, многие подписчики, думаю, видели ее. Однако от того, что она классическая, не следует, что она корректная.



Давайте посмотрим на вот эту строчку поближе:



inst_ptr = new Singleton;





Что здесь происходит? На самом деле происходят 3 шага:



1️⃣ Аллокация памяти под объект.



2️⃣ Вызов его конструктора на аллоцированной памяти.



3️⃣ Присваивание inst_ptr'у нового значения.



И вот мы, как наивные чукотские мальчики, думаем, что все эти 3 шага происходят в этом конкретном порядке. А вот фигушки! Компилятор, мать его ети. Иногда он может просто взять и переставить шаги 2 и 3 местами! И вот к чему это может привести.



Давайте посмотрим эквивалентный плюсовый код, когда компилятор переставил шаги:



static Singleton* Singleton::instance() {

if (inst_ptr == NULL) {

Lock lock;

if (inst_ptr == NULL) {

inst_ptr = // step 3

operator new(sizeof(Singleton)); // step 1

new(inst_ptr) Singleton; // step 2

}

}

return inst_ptr;

}





Че здесь происходит. Здесь просто явно показаны шаги. С помощью operator new мы выделяем память(1 шаг), дальше присваиваем указатель на эту память inst_ptr'у(шаг 3). И в конце конструируем объект. И напомню, это не программист так пишет. Это эквивалентный код тому, что может сгенерировать компилятор.



И этот код совсем не эквивалентен тому, что было изначально. Потому что конструктор Singleton может кинуть исключение и очень важно, чтобы есть он это сделает, то inst_ptr останется нетронутым. А он как бы изменяется. Поэтому, в большинстве случаев, компилятору нельзя генерировать такой код. Но при определенных условиях, он может это сделать. Например, если докажет сам себе, что конструктор не может кинуть исключение. И вот тогда происходит magic.



Тред №1 входит в первое условие, берет лок и выполняет шаги 1 и 3 и потом засыпает по воле планировщика. И мы имеем состояние, когда указатель проинициализирован, а объекта на этой памяти еще нет(шаг 2 не выполнен).



Тред №2 входит в функцию, видит, что указатель ненулевой и возвращает его наружу. А внешний код потом берет и разыименовывает указатель с непроинициализированной памятью. Уупс. UB.



Что можно сделать? Вообще говоря, ничего. Если сам язык не подразумевает многопоточности, то компилятор даже не думает о таких штуках и с его точки зрения все валидно. Даже volatile предотвращает реордеринг инструкций в рамках только одного потока. Но мы же в многоядерной среде и там существуют совершенно другие эффекты, о которых "безпоточные" С и С++ в душе не знают. Напоминаю, что мы до сих пор в эре до С++11. Завтра чуть ближе посмотрим на конкретные проблемы, при которых мы сталкиваемся, находясь в многопоточном окружении.



Criticize your solutions. Stay cool.



#concurrency #cppcore #compiler #cpp11