Исключения в перемещающем конструкторе



Продолжаем серию постов. Как вы могли заметить, во всех примерах с перемещающим конструктором был поставлен спецификатор noexcept:

class string

{

public:

string(string &&other) noexcept

{ ... }

};




И неспроста я это делал! Я бы даже сказал, что где-то это является очень важным требованием.



Возьмем в качестве примера всем нам известный std::vector. Одним из свойств этой структуры данных является перевыделение памяти большего размера, при увеличении количества объектов. При этом старые объекты отправляются в новый участок памяти. Логично задаться вопросом — как? И логично ответить, что в целях повышенной производительности нужно выполнять перемещение каждого объекта, а не копирование, если есть возможность.



Когда же есть возможность переместить объект? Оказывается, наличие обычного перемещающего конструктора — это недостаточное условие! Необходимо гарантировать, что перемещение будет выполнено успешно и без исключений.



Про исключения мы пока не успели написать, но в рамках этой статьи можно считать, что это специальный способ сообщить об ошибке, которую можно обработать без падения программы.



Представим ситуацию, что МЫ - ВЕКТОР. Вот мы выделили новую память и начали туда перемещать объекты. И где-то на середине процесса получаем исключение при перемещении одного из объектов. Что нам делать-то с этим? Вообще говоря, надо разрушить все что переместили в новой памяти и сообщить об этом пользователю. Т.е. откатить все назад. НО! Назад дороги нет 😅 Разрушать объекты из новой области памяти нельзя — их ресурсы перемещены из старой памяти. Обратно перемещать тоже нельзя — вдруг опять исключение прилетит? Брать на себя ответственность сделать что-то одно тоже нельзя — мы вектор из стандартной библиотеки. В общем, встаем в аналитический ступор...



Таким образом, мы приходим к выводу, что перемещать можно, если есть явные гарантии от пользовательского класса. И это действительно так, взгляните на живой пример 1.



Конечно, если копирующий конструктор запрещен (например), то будет вызван хоть какой-то, т.е. перемещающий с исключениями: живой пример 2. Тут важно отметить стремление разработчиков STL обезопаситься там, где это возможно.



Если мы тоже хотим по возможности не нести ответственность за касяки стороннего класса, то нам приходит на помощь функция:

std::move_if_noexcept(object);




Она делает всё то же самое, что и классическая std::move, но только если перемещающий конструктор помечен как noexcept (или кроме перемещающего конструктора нет альтернатив). А вот если внутри метода, помеченного noexcept, исключение всё таки будет брошено, то будет все очень очень плохо... Скажу по опыту, такое отладить достаточно тяжело. Поговорим об этом, когда наступит время серии постов про исключения 😉



Пользовательские классы очень и очень часто засовывают в стандартные контейнеры. Порой это происходит не сразу, через долгое время. Следовательно, если производительность в проекте важна, то побеспокоиться о гарантиях работы без исключений при перемещении есть смысл сразу, как только был написан наш класс. Либо же есть другой путь — копировать всё подряд, но это тема другого поста 😊



Надеюсь, что мне удалось вас убедить в важности noexcept в перемещающем конструкторе. Осталось совсем немного - оптимизации RVO/NRVO.



#cppcore #memory #algorithm