Application Binary Interface
Вчера разобрали, что обратная совместимость ABI играет значительную роль при разработке shared библиотек. Но это только применение этого понятие, сам термин мы еще не разбирали. Сегодня исправим этот момент.
ABI - набор правил, которые определяют соглашения о вызовах и расположение структур(стека, ваших кастомных и тд) в памяти. Соглашение о вызовах, наверное, здесь центровую роль играет. В общих словах, это какие операции нужно делать, чтобы выполнить функцию. Компьютер на самом деле не знает, что такое "выполнить функцию". Он знает лишь небольшой набор команд. Типа сложить, переместить, прыгнуть. То, как передаются аргументы для функции - через стек или через регистры, в каком порядке передаются аргументы, как очищать регистры, куда сохранять возвращаемое значение, и определяет calling convention. Но это что-то низкоуровневое, нам бы поближе к коду.
Сравним с API. Если API говорит, что вот есть такой-то набор функций и вы можете их использовать. То ABI говорит, как вы должны этими функциями пользоваться. Ну не вы, а скомпилированный код. Можно представить себе, что все детали того, что нужно сделать процессору, чтобы выполнить ваш код - это и есть ABI. То есть, как API, только на уровень ниже.
Что может изменить ABI? Очень много вещей. Именно поэтому имплементацию выносят в отдельный класс. Всего одна перестановка полей класса местами ломает низкоуровневое представление о том, как работать с вашим кодом. Потому что для доступа к определенному полю нужен определенный сдвиг от начала данных объекта. При перестановке эти сдвиги меняются и использование вашего кода без перекомпиляции будет вести к неправильной работе приложения.
Приведу некоторые изменения в коде, которые могут аффектить ABI.
👉🏿 Добавление, удаление и изменение порядка полей класса.
👉🏿 Изменение иерархии классов. Данные всех базовых классов лежат в определенном порядке, изменение иерархии влечет изменения в том, как данные объекта располагаются в памяти.
👉🏿 Изменение шаблонных аргументов в шаблонных классах. Это влияет на то, какое mangled имя будет у класса, и соответсвенно, то как к нему обращаться.
👉🏿 Объявление функции как inline. Компилятор может встроить такую функцию и ее имени просто больше не будет в списке доступных функций.
👉🏿 Изменение сигнатуры функций, включая cv-квалификаторы. Тоже по причине манглинга.
👉🏿 Добавление первого виртуального метода. Обычно внутри объекта появляется vptr, это ведет к изменению расположения объекта в памяти.
👉🏿 Изменение порядка объявления виртуальных методов. В таблице виртуальных функций они располагаются по порядку и вызываются по порядку. Изменив порядок можно вызвать не тот метод.
👉🏿 Изменение набора приватных методов. Ну а здесь-то што?! Клиент же их даже вызвать не может? Дело в том, что приватные методы участвуют в разрешении перегрузок, поэтому клиентский код в каком-то смысле имеет к ним доступ и знает об этом наборе методов. Его изменение в коде не перезаписывает знание клиента о нем, поэтому низя так делать.
👉🏿 И еще куча приколюх с наследованием.
Деталей очень много и списочек там реально очень большой. Я привел только самую верхушку, которую все понимают.
И вот при стандартном подходе с header/implementation любое изменение из этого списка влечет за собой перекомпиляцию всего кода, использующего ваш класс. А это как бы пипец. Почти любая реальная промышленная плюсовая задача требует таких изменений.
При использовании pimpl мы избегаем такого исхода. Указатель - он и в Африке указатель. На заданной платформе имеет один и тот же размер. И пока вы не делаете этих "опасных" изменений в публичном классе, его структура никак не изменяется. А обычно таких изменений не делают, потому что там оставляют только базовый API, который очень стабилен.
Вот такие пироги. Надеюсь, этот пост прояснил некоторые вопросы, которые могли вчера у вас возникнуть.
Stay compatible. Stay cool.
#design #hardcore #cppcore
Вчера разобрали, что обратная совместимость ABI играет значительную роль при разработке shared библиотек. Но это только применение этого понятие, сам термин мы еще не разбирали. Сегодня исправим этот момент.
ABI - набор правил, которые определяют соглашения о вызовах и расположение структур(стека, ваших кастомных и тд) в памяти. Соглашение о вызовах, наверное, здесь центровую роль играет. В общих словах, это какие операции нужно делать, чтобы выполнить функцию. Компьютер на самом деле не знает, что такое "выполнить функцию". Он знает лишь небольшой набор команд. Типа сложить, переместить, прыгнуть. То, как передаются аргументы для функции - через стек или через регистры, в каком порядке передаются аргументы, как очищать регистры, куда сохранять возвращаемое значение, и определяет calling convention. Но это что-то низкоуровневое, нам бы поближе к коду.
Сравним с API. Если API говорит, что вот есть такой-то набор функций и вы можете их использовать. То ABI говорит, как вы должны этими функциями пользоваться. Ну не вы, а скомпилированный код. Можно представить себе, что все детали того, что нужно сделать процессору, чтобы выполнить ваш код - это и есть ABI. То есть, как API, только на уровень ниже.
Что может изменить ABI? Очень много вещей. Именно поэтому имплементацию выносят в отдельный класс. Всего одна перестановка полей класса местами ломает низкоуровневое представление о том, как работать с вашим кодом. Потому что для доступа к определенному полю нужен определенный сдвиг от начала данных объекта. При перестановке эти сдвиги меняются и использование вашего кода без перекомпиляции будет вести к неправильной работе приложения.
Приведу некоторые изменения в коде, которые могут аффектить ABI.
👉🏿 Добавление, удаление и изменение порядка полей класса.
👉🏿 Изменение иерархии классов. Данные всех базовых классов лежат в определенном порядке, изменение иерархии влечет изменения в том, как данные объекта располагаются в памяти.
👉🏿 Изменение шаблонных аргументов в шаблонных классах. Это влияет на то, какое mangled имя будет у класса, и соответсвенно, то как к нему обращаться.
👉🏿 Объявление функции как inline. Компилятор может встроить такую функцию и ее имени просто больше не будет в списке доступных функций.
👉🏿 Изменение сигнатуры функций, включая cv-квалификаторы. Тоже по причине манглинга.
👉🏿 Добавление первого виртуального метода. Обычно внутри объекта появляется vptr, это ведет к изменению расположения объекта в памяти.
👉🏿 Изменение порядка объявления виртуальных методов. В таблице виртуальных функций они располагаются по порядку и вызываются по порядку. Изменив порядок можно вызвать не тот метод.
👉🏿 Изменение набора приватных методов. Ну а здесь-то што?! Клиент же их даже вызвать не может? Дело в том, что приватные методы участвуют в разрешении перегрузок, поэтому клиентский код в каком-то смысле имеет к ним доступ и знает об этом наборе методов. Его изменение в коде не перезаписывает знание клиента о нем, поэтому низя так делать.
👉🏿 И еще куча приколюх с наследованием.
Деталей очень много и списочек там реально очень большой. Я привел только самую верхушку, которую все понимают.
И вот при стандартном подходе с header/implementation любое изменение из этого списка влечет за собой перекомпиляцию всего кода, использующего ваш класс. А это как бы пипец. Почти любая реальная промышленная плюсовая задача требует таких изменений.
При использовании pimpl мы избегаем такого исхода. Указатель - он и в Африке указатель. На заданной платформе имеет один и тот же размер. И пока вы не делаете этих "опасных" изменений в публичном классе, его структура никак не изменяется. А обычно таких изменений не делают, потому что там оставляют только базовый API, который очень стабилен.
Вот такие пироги. Надеюсь, этот пост прояснил некоторые вопросы, которые могли вчера у вас возникнуть.
Stay compatible. Stay cool.
#design #hardcore #cppcore