
RabbitMQ Streams для сбора и обработки телеметрии умного дома
Традиционно для сценариев поточной обработки с использованием Map-Reduce рассматриваются такие решения как Hadoop/Spark, либо используются конвейерные системы (например Kafka), для которых есть возможность реализовать концепцию потоков (streams) с помощью дополнительных инструментов (в случае с Kafka это Kafka Connect (для подключения к источникам и получателям потока) и Kafka Streams для реализации Map-Reduce на потоке сообщений.
Начиная с версии 3.9 RabbitMQ анонсировал поддержку нового типа очереди, оптимизированного для поточной обработки. В этой статье мы посмотрим на основные отличия очередей RabbitMQ от классического режима очереди сообщений, а также возможные сценарии использования (с примерами кода на Go).
Читать: https://habr.com/ru/post/653689/?utm_campaign=653689
Традиционно для сценариев поточной обработки с использованием Map-Reduce рассматриваются такие решения как Hadoop/Spark, либо используются конвейерные системы (например Kafka), для которых есть возможность реализовать концепцию потоков (streams) с помощью дополнительных инструментов (в случае с Kafka это Kafka Connect (для подключения к источникам и получателям потока) и Kafka Streams для реализации Map-Reduce на потоке сообщений.
Начиная с версии 3.9 RabbitMQ анонсировал поддержку нового типа очереди, оптимизированного для поточной обработки. В этой статье мы посмотрим на основные отличия очередей RabbitMQ от классического режима очереди сообщений, а также возможные сценарии использования (с примерами кода на Go).
Читать: https://habr.com/ru/post/653689/?utm_campaign=653689