Только сегодня досмотрел митап от EXPF и СберМаркет - https://youtu.be/1blbhx9BYxk.
Для меня самым интересным был доклад Виталия Черемисина про чувствительность метрик. Виталий очень доступно все разжевал и рассказал о том, как оценивать эту самую чувствительность метрик. Ниже небольшой конспект этой части его выступления.
Для того, что оценить чувствительность той или иной метрики, нужно моделировать рост нашей метрики на некоторой выборке и оценивать, при каком условии чувствительность максимальная.
1. Нужно взять некоторую группу пользователей, разбить ее на две группы, так, чтобы в обеих группах наша метрика была равна.
2. Выбрать несколько значений uplift. Шаг может быть разным, исходя из эмпирического опыта.
3. И по каждому из значений uplift нужно произвести операции:
- В одной из выборок (пусть она будет B) увеличить значение метрики на величину uplift. Это нужно делать не коэффициентом умножить на вреднее, а некоторым пользователям добавить конверсии, каким-то убрать - в результате получится полноценная выборка с дополнительными конверсиями.
- Делать множественные подвыборки (например, 1000) из обеих групп, сравнивать их показатели, рассчитывать pvalue.
- В результате у нас получится 1000 значений pvalue. Считаем, какой в каком проценте из них pvalue был ниже 0,05. Например, их будет 65%. Вот это процент и есть чувствительность нашей метрики при увеличении на некоторую величину.
- Фиксируем данные. И то же самое теперь производим с остальными значениям uplift.
4. В результате у нас получится таблица, в которой у нас посчитана чувствительность метрики при разных значениях ее увеличения. И можно сделать вывод, при каком росте конверсии можно рассчитывать зафиксировать эффект, если он есть.
Для чего это можно использовать:
1. Чтобы сделать вывод, нужно при проводить эксперимент. Например, выяснится, что, чтобы получить чувствительность 80%, нужно увеличить конверсию на 30%, что считается невозможным при данных изменениях. Значит, на данный момент нужно отказаться от тестирования данной гипотезы.
2. Чтобы приоритизировать гипотезы для проведения экспериментов. Проверив чувствительность многих метрик и предполагая их увеличение на определенный процент, можно понимать, какие гипотезы про какие метрики являются более перспективными с точки зрения возможности увидеть положительный эффект. Становится понятно, с каких метрик и каких гипотез лучше начать тестирование изменений.
Для меня самым интересным был доклад Виталия Черемисина про чувствительность метрик. Виталий очень доступно все разжевал и рассказал о том, как оценивать эту самую чувствительность метрик. Ниже небольшой конспект этой части его выступления.
Для того, что оценить чувствительность той или иной метрики, нужно моделировать рост нашей метрики на некоторой выборке и оценивать, при каком условии чувствительность максимальная.
1. Нужно взять некоторую группу пользователей, разбить ее на две группы, так, чтобы в обеих группах наша метрика была равна.
2. Выбрать несколько значений uplift. Шаг может быть разным, исходя из эмпирического опыта.
3. И по каждому из значений uplift нужно произвести операции:
- В одной из выборок (пусть она будет B) увеличить значение метрики на величину uplift. Это нужно делать не коэффициентом умножить на вреднее, а некоторым пользователям добавить конверсии, каким-то убрать - в результате получится полноценная выборка с дополнительными конверсиями.
- Делать множественные подвыборки (например, 1000) из обеих групп, сравнивать их показатели, рассчитывать pvalue.
- В результате у нас получится 1000 значений pvalue. Считаем, какой в каком проценте из них pvalue был ниже 0,05. Например, их будет 65%. Вот это процент и есть чувствительность нашей метрики при увеличении на некоторую величину.
- Фиксируем данные. И то же самое теперь производим с остальными значениям uplift.
4. В результате у нас получится таблица, в которой у нас посчитана чувствительность метрики при разных значениях ее увеличения. И можно сделать вывод, при каком росте конверсии можно рассчитывать зафиксировать эффект, если он есть.
Для чего это можно использовать:
1. Чтобы сделать вывод, нужно при проводить эксперимент. Например, выяснится, что, чтобы получить чувствительность 80%, нужно увеличить конверсию на 30%, что считается невозможным при данных изменениях. Значит, на данный момент нужно отказаться от тестирования данной гипотезы.
2. Чтобы приоритизировать гипотезы для проведения экспериментов. Проверив чувствительность многих метрик и предполагая их увеличение на определенный процент, можно понимать, какие гипотезы про какие метрики являются более перспективными с точки зрения возможности увидеть положительный эффект. Становится понятно, с каких метрик и каких гипотез лучше начать тестирование изменений.