Объясните разницу между «обучением с учителем» (supervised) и «обучением без учителя» (unsupervised) и приведите примеры.
Supervised подразумевает обучение модели на данных, для которых известны ответы, то есть каждый пример в обучающем наборе имеет соответствующую метку или целевую переменную. Одной из задач обучения с учителем является классификация, где модель учится различать объекты разных классов. Это может пригодиться, например, при определении спама в электронной почте.
Unsupervised используется, когда у нас нет меток и мы хотим обнаружить скрытые закономерности в данных. Пример задачи обучения без учителя — кластеризация, где модель группирует данные на основе сходства. Это может пригодиться, например, при сегментации аудитории для маркетинговых целей.
Выбор между supervised и unsupervised зависит от конкретной задачи и наличия/отсутствия размеченных данных.