Какие шаги вы бы предприняли для предобработки данных перед обучением модели, и почему эти шаги важны?
👣 Нормализация или стандартизация числовых признаков. Многие алгоритмы машинного обучения работают лучше, когда числовые признаки имеют одинаковый масштаб.
👣 Кодирование категориальных переменных. Большинство алгоритмов машинного обучения требуют числовые данные на вход.
👣 Удаление признаков с высокой корреляцией. Они могут привести к проблемам в некоторых моделях, например в линейной регрессии.
👣 Применение PCA для уменьшения размерности данных. Здесь следует оценивать каждый конкретный случай.
👣 Заполнение пропущенных значений. Они могут исказить данные.
👣 Создание новых признаков (feature engineering). Это может улучшить производительность модели, особенно если новые признаки содержат важную информацию для задачи.
👣 Нормализация или стандартизация числовых признаков. Многие алгоритмы машинного обучения работают лучше, когда числовые признаки имеют одинаковый масштаб.
👣 Кодирование категориальных переменных. Большинство алгоритмов машинного обучения требуют числовые данные на вход.
👣 Удаление признаков с высокой корреляцией. Они могут привести к проблемам в некоторых моделях, например в линейной регрессии.
👣 Применение PCA для уменьшения размерности данных. Здесь следует оценивать каждый конкретный случай.
👣 Заполнение пропущенных значений. Они могут исказить данные.
👣 Создание новых признаков (feature engineering). Это может улучшить производительность модели, особенно если новые признаки содержат важную информацию для задачи.