В каких случаях вы будете применять ROC-кривую для оценки модели?



ROC-кривая (receiver operating characteristics curve) базируется на следующих метриках:

TPR (true positive rate) — доля положительных объектов, правильно предсказанных положительными;

▪️FPR (false positive rate) — доля отрицательных объектов, неправильно предсказанных положительными.



Именно в осях TPR/FPR и строится кривая. Эти метрики зависят от порога. Порогом мы называем значение, при котором по выходу модели решаем, к какому классу отнести объект. Так, выбор порога позволяет нам регулировать ошибки на объектах обоих классов. Его изменение позволяет увидеть, как меняются значения TPR и FPR, что и отражается на ROC-кривой.



Известно, что чем лучше модель разделяет два класса, тем больше площадь (area under curve) под ROC-кривой. Мы можем использовать эту площадь в качестве метрики и называть её AUC.



В каких случаях лучше отдать предпочтение этой метрике? Допустим, у нас есть клиент — сотовый оператор, который хочет знать, будет ли клиент пользоваться его услугами через месяц. При этом компании интересно упорядочить клиентов по вероятности прекращения обслуживания. Именно в таких задачах, где нам важна не метка сама по себе, а правильный порядок на объектах, имеет смысл применять AUC. Кроме того, метрика полезна в условиях несбалансированных классов или когда стоимость разных типов ошибок различна.



#машинноe_обучение