Напишите линейную регрессию на Python с нуля
Это один из самых простых алгоритмов. Он включает следующие шаги:
1️⃣ Инициализация параметров.
2️⃣ Вычисление предсказаний.
3️⃣ Вычисление функции потерь.
4️⃣ Обновление параметров с помощью градиентного спуска.
5️⃣ Повторение до сходимости.
#машинное_обучение
#программирование
Это один из самых простых алгоритмов. Он включает следующие шаги:
import numpy as np
class LinearRegression:
def __init__(self, learning_rate=0.01, n_iters=1000):
self.learning_rate = learning_rate
self.n_iters = n_iters
def fit(self, X, y):
n_samples, n_features = X.shape
self.weights = np.zeros(n_features)
self.bias = 0
for _ in range(self.n_iters):
model_preds = self.predict(X)
dw = (1 / n_samples) * np.dot(X.T, (model_preds - y))
db = (1 / n_samples) * np.sum(model_preds - y)
self.weights -= self.learning_rate * dw
self.bias -= self.learning_rate * db
def predict(self, X):
return np.dot(X, self.weights) + self.bias
#машинное_обучение
#программирование