В чём разница между частотной вероятностью и байесовской вероятностью?
Это два разных подхода к интерпретации вероятности, которые часто противопоставляются.
🔹Частотная вероятность
Основывается на идее долгосрочной стабильности частот событий. В этой интерпретации вероятность события определяется как предел относительной частоты его наблюдения в серии однородных независимых испытаний. То есть этот подход предполагает, что вероятность может быть объективно измерена путём повторения эксперимента в одинаковых условиях множество раз.
Пример: вы бросаете справедливый шестигранный кубик большое количество раз и подсчитываете, сколько раз выпадает шестёрка. Если вы бросите кубик 600 раз и обнаружите, что шестёрка выпала 100 раз, то по частотному подходу вероятность выпадения шестёрки на этом кубике будет 100/600 или 1/6.
🔹Байесовская вероятность
Байесовский подход рассматривает вероятность как меру уверенности или степени веры в наступление события. Для определения степени уверенности при получении новой информации в байесовской теории используется теорема Байеса.
Пример: допустим, что у вас есть редкая болезнь, которая встречается у 1 из 10000 человек. Тест на эту болезнь имеет чувствительность 99% (вероятность того, что тест окажется положительным у больного человека) и специфичность 99% (вероятность того, что тест окажется отрицательным у здорового человека). Если ваш тест на болезнь оказался положительным, байесовская вероятность того, что вы действительно больны, будет рассчитываться с учётом этих данных и априорной вероятности заболевания (1/10000), что даст вам другое и, возможно, менее интуитивное значение вероятности, чем простая интерпретация результата теста.
#теория_вероятностей
Это два разных подхода к интерпретации вероятности, которые часто противопоставляются.
🔹Частотная вероятность
Основывается на идее долгосрочной стабильности частот событий. В этой интерпретации вероятность события определяется как предел относительной частоты его наблюдения в серии однородных независимых испытаний. То есть этот подход предполагает, что вероятность может быть объективно измерена путём повторения эксперимента в одинаковых условиях множество раз.
Пример: вы бросаете справедливый шестигранный кубик большое количество раз и подсчитываете, сколько раз выпадает шестёрка. Если вы бросите кубик 600 раз и обнаружите, что шестёрка выпала 100 раз, то по частотному подходу вероятность выпадения шестёрки на этом кубике будет 100/600 или 1/6.
🔹Байесовская вероятность
Байесовский подход рассматривает вероятность как меру уверенности или степени веры в наступление события. Для определения степени уверенности при получении новой информации в байесовской теории используется теорема Байеса.
Пример: допустим, что у вас есть редкая болезнь, которая встречается у 1 из 10000 человек. Тест на эту болезнь имеет чувствительность 99% (вероятность того, что тест окажется положительным у больного человека) и специфичность 99% (вероятность того, что тест окажется отрицательным у здорового человека). Если ваш тест на болезнь оказался положительным, байесовская вероятность того, что вы действительно больны, будет рассчитываться с учётом этих данных и априорной вероятности заболевания (1/10000), что даст вам другое и, возможно, менее интуитивное значение вероятности, чем простая интерпретация результата теста.
#теория_вероятностей