Каковы различия между моделью, минимизирующей среднеквадратичную ошибку (MSE), и моделью, минимизирующей среднюю абсолютную ошибку (MAE)?



Можно перечислить несколько различий:



▫️MSE более чувствительна к выбросам по сравнению с MAE. Дело в том, что среднеквадратичная функция возводит ошибки в квадрат. Из-за этого большие ошибки оказывают на результат большее влияние.

▫️С MSE градиент вычисляется легче. Это может ускорить сходимость алгоритма.



Так, MSE подходит для задач, где важно учитывать большие ошибки, когда необходимо сильно штрафовать значимые отклонения от целевых значений. MAE предпочтителен в ситуациях, когда выбросы присутствуют и их диспропорциональное влияние на результат модели нежелательно.



#машинное_обучение