Как использовать SVM для поиска аномалий (выбросов)?



Для такой задачи можно применять метод опорных векторов с одним классом, или One-Class SVM. Напомним, что основная идея алгоритма SVM — разделить классы гиперплоскостью так, чтобы максимизировать зазор между ними. В случае с One-Class цель состоит в том, чтобы найти гиперплоскость, которая лучше всего описывает один класс тренировочных данных. Такой алгоритм не пытается разделить два или более класса, а скорее стремится ограничить область, где присутствует большинство данных одного класса.



После использования One-Class SVM мы получаем границу, по одну сторону которой максимально плотно лежат наблюдения из тренировочной выборки, а по другую — аномальные значения. Вот основные шаги:

🔹Обучить модель One-Class SVM на данных без аномалий.

🔹Использовать обученную модель для предсказания, является ли новая точка данных аномальной. Алгоритм вернёт -1 для аномальных точек и 1 для нормальных.



#машинное_обучение