Что такое Local Sensitive Hash (LSH) и где он используется?



Это алгоритм, предназначенный для поиска ближайших соседей в больших наборах данных. Основывается на идее использования хеш-функции, которая переводит близкие объекты в один бакет (корзину).



У подходящих хеш-функций вероятность коллизии на близких объектах должна быть высокая, а на далёких — низкая. Иными словами, одинаковые хеш-значения должны с более высокой вероятностью присваиваться близким по некоторой метрике объектам.



При поиске ближайшего соседа для нового объекта сначала вычисляется его хеш-значение, а затем поиск ограничивается объектами в соответствующем бакете. Это позволяет значительно сократить объём данных, по которым необходимо провести поиск, а значит увеличить скорость обработки запросов.



LSH можно использовать в задачах, где требуется быстро находить похожие элементы в больших объёмах данных, например при поиске дубликатов документов или изображений в большом корпусе данных.



#машинное_обучение