Какие основные рекомендательные модели вы знаете?
👤 Коллаборативная фильтрация. Метод строит рекомендации для пользователя, используя известные предпочтения (чаще всего оценки) других пользователей. То есть отталкиваемся от идеи, что похожим пользователям нравятся похожие объекты.
- User-based и item-based алгоритмы:
В первом случае строим предположение, что объект понравится пользователю, если он понравился похожим пользователям. Во втором случае предполагаем, что объект понравится пользователю, если ему понравились похожие объекты.
👤 Алгоритм SVD (сингулярное разложение). Делаем разложение матрицы оценок. Помимо предсказания оценок, алгоритм позволяет выявить скрытые признаки объектов и интересы пользователей.
👤 Коллаборативная фильтрация. Метод строит рекомендации для пользователя, используя известные предпочтения (чаще всего оценки) других пользователей. То есть отталкиваемся от идеи, что похожим пользователям нравятся похожие объекты.
- User-based и item-based алгоритмы:
В первом случае строим предположение, что объект понравится пользователю, если он понравился похожим пользователям. Во втором случае предполагаем, что объект понравится пользователю, если ему понравились похожие объекты.
👤 Алгоритм SVD (сингулярное разложение). Делаем разложение матрицы оценок. Помимо предсказания оценок, алгоритм позволяет выявить скрытые признаки объектов и интересы пользователей.