
🔧 Подготовка данных для расширенного машинного обучения
Предварительная обработка и очистка данных должны проводиться до того, как набор данных будет использоваться для обучения модели. Необработанные данные зачастую искажены и ненадежны, и в них могут быть пропущены значения. Использование таких данных при моделировании может приводить к неверным результатам. Эти задачи являются частью процесса обработки и анализа данных группы и обычно подразумевают первоначальное изучение набора данных, используемого для определения и планирования необходимой предварительной обработки. Более подробные инструкции по процессу TDSP см. в процедуре, описанной в статье Процесс обработки и анализа данных группы.
Задачи предварительной обработки и очистки данных, например задача изучения данных, могут быть выполнены в самых разнообразных средах, таких как SQL, Hive или Студия машинного обучения Azure (классическая версия), и с помощью различных средств и языков, таких как R или Python, в зависимости от того, где хранятся данные и как они отформатированы. Поскольку по свой природе процесс TDSP является итеративным, эти задачи могут выполняться на различных этапах рабочего процесса.
➡️ Читать дальше
@data_analysis_ml
Предварительная обработка и очистка данных должны проводиться до того, как набор данных будет использоваться для обучения модели. Необработанные данные зачастую искажены и ненадежны, и в них могут быть пропущены значения. Использование таких данных при моделировании может приводить к неверным результатам. Эти задачи являются частью процесса обработки и анализа данных группы и обычно подразумевают первоначальное изучение набора данных, используемого для определения и планирования необходимой предварительной обработки. Более подробные инструкции по процессу TDSP см. в процедуре, описанной в статье Процесс обработки и анализа данных группы.
Задачи предварительной обработки и очистки данных, например задача изучения данных, могут быть выполнены в самых разнообразных средах, таких как SQL, Hive или Студия машинного обучения Azure (классическая версия), и с помощью различных средств и языков, таких как R или Python, в зависимости от того, где хранятся данные и как они отформатированы. Поскольку по свой природе процесс TDSP является итеративным, эти задачи могут выполняться на различных этапах рабочего процесса.
@data_analysis_ml