
💫 4 пакета Python для причинно-следственного анализа данных
Причинно-следственный анализ — это область экспериментальной статистики, направленная на установление и обоснование причинно-следственных связей. Использование статистических алгоритмов для доказательства причинно-следственных связей в наборе данных при строгом допущении называется эксплораторным причинно-следственным анализом (ЭПСА).
ЭПСА — это способ доказать причинно-следственные связи с помощью более контролируемых экспериментов, а не только на основе корреляции. Часто требуется испытать контрфактическое состояние — иное состояние при других обстоятельствах. Проблема в том, что корреляционный анализ позволяет приблизительно установить только причинно-следственные связи, но не контрфактические.
Анализ причинно-следственных связей — это совершенно другая область исследований в науке о данных, поскольку он отличается от предсказаний, полученных в результате моделирования с помощью машинного обучения. Можно всегда предсказать результат МО на основе имеющихся данных, но не то, что выходит за рамки этих данных.
Чтобы узнать больше о причинно-следственном анализе, познакомимся с 4 пакетами Python, которые можно использовать для исследования данных.
➡️ Читать дальше
@data_analysis_ml
Причинно-следственный анализ — это область экспериментальной статистики, направленная на установление и обоснование причинно-следственных связей. Использование статистических алгоритмов для доказательства причинно-следственных связей в наборе данных при строгом допущении называется эксплораторным причинно-следственным анализом (ЭПСА).
ЭПСА — это способ доказать причинно-следственные связи с помощью более контролируемых экспериментов, а не только на основе корреляции. Часто требуется испытать контрфактическое состояние — иное состояние при других обстоятельствах. Проблема в том, что корреляционный анализ позволяет приблизительно установить только причинно-следственные связи, но не контрфактические.
Анализ причинно-следственных связей — это совершенно другая область исследований в науке о данных, поскольку он отличается от предсказаний, полученных в результате моделирования с помощью машинного обучения. Можно всегда предсказать результат МО на основе имеющихся данных, но не то, что выходит за рамки этих данных.
Чтобы узнать больше о причинно-следственном анализе, познакомимся с 4 пакетами Python, которые можно использовать для исследования данных.
➡️ Читать дальше
@data_analysis_ml