
Python: Искусственный интеллект, большие данные и облачные вычисления
Дейтел П., Дейтел Х. (2020)
В вашем распоряжении более пятисот реальных задач — от фрагментов до 40 больших сценариев и примеров с полноценной реализацией. IPython с Jupyter Noteboos позволят быстро освоить современные идиомы программирования Python. Главы 1–5 и фрагменты глав 6–7 сделают понятными примеры решения задач искусственного интеллекта из глав 11–16. Вы познакомитесь с обработкой естественного языка, анализом эмоций в Twitter®, когнитивными вычислениями IBM® Watson™, машинным обучением с учителем в задачах классификации и регрессии, машинным обучением без учителя в задачах кластеризации, распознавания образов с глубоким обучением и сверточными нейронными сетями, рекуррентными нейронными сетями, большими данными с Hadoop®, Spark™ и NoSQL, IoT и многим другим.
Скачать
👉 @book_for_dev
Дейтел П., Дейтел Х. (2020)
В вашем распоряжении более пятисот реальных задач — от фрагментов до 40 больших сценариев и примеров с полноценной реализацией. IPython с Jupyter Noteboos позволят быстро освоить современные идиомы программирования Python. Главы 1–5 и фрагменты глав 6–7 сделают понятными примеры решения задач искусственного интеллекта из глав 11–16. Вы познакомитесь с обработкой естественного языка, анализом эмоций в Twitter®, когнитивными вычислениями IBM® Watson™, машинным обучением с учителем в задачах классификации и регрессии, машинным обучением без учителя в задачах кластеризации, распознавания образов с глубоким обучением и сверточными нейронными сетями, рекуррентными нейронными сетями, большими данными с Hadoop®, Spark™ и NoSQL, IoT и многим другим.
Скачать
👉 @book_for_dev