
SKILLS TABLE
Меня часто спрашивают, как стать крутым ML инженером, сделать качественный скачок в карьере, дойти до Senior. Делюсь пуленепробиваемой методикой, которой со Мной поделился Валера Бабушкин. Секрет прост как три рубля, но одновременно тернист.
😁 Шаг 1: Формулируем точку Б
Какая конечная цель? К чему хотим придти? Посмотрим на это как на задачу классификации: что делает ML инженер, когда формулирует проблему для модели? – он собирает датасет.
Я обратился к Валере с вопросом "как стать синьором?", он предложил Мне вспомнить всех синьоров, которых Я знаю лично. Из Х5 их набралось штук десять (из департамента в 150+ человек). Мы выписали всех, чтоб были перед глазами.
😁 Шаг 2: Определяем метрику
Чтобы чем-то управлять, надо это измерять. Как только мы поняли, к чему мы хотим придти, нам необходимо научиться понимать, двигаемся ли мы в верном направлении.
Мы выделили навыки (признаки в датасете), которые помогут отделять класс "синьоры" от "не-синьоров". В разрезе чего будем смотреть? Примерный список на выходе:
• Coding (Python, MLOps)
• SQL, Databases, Big Data
• Machine Learning
• ML System Design
• A/B Testing & Statistics
• People Management
• Self-Management (Discipline)
• Achievements, Authority
😁 Шаг 3: Измеряем точку Б
У нас есть цель, и есть критерии. Самое время определить, где находится наша цель.
Мы взяли список, взяли каждого синьора, и Я, опираясь на свои грубые субъективные прикидки, стал оценивать каждого в разрезе каждого навыка по шкале от 0 до 10. По каждому навыку оценки разнились, но медианный уровень был получен.
Сейчас, для себя, Я использую персентили. Например "60% в выступлениях" означает, что "Я думаю, что Я лучше, чем 60% из всех, кто выступает".
😁 Шаги 4-5-6: Играем в RPG
Итеративно:
- Честно оцениваем текущий уровень;
- Выявляем по каким навыкам наибольший пробел;
- Работаем над ошибками, учимся, ищем советов.
Каждое обновление снабжается кейсом, ссылкой или другим артефактом в комментариях к карточке, подтверждающим, что по этому навыку Я подрос.
#notion
Меня часто спрашивают, как стать крутым ML инженером, сделать качественный скачок в карьере, дойти до Senior. Делюсь пуленепробиваемой методикой, которой со Мной поделился Валера Бабушкин. Секрет прост как три рубля, но одновременно тернист.
Какая конечная цель? К чему хотим придти? Посмотрим на это как на задачу классификации: что делает ML инженер, когда формулирует проблему для модели? – он собирает датасет.
Я обратился к Валере с вопросом "как стать синьором?", он предложил Мне вспомнить всех синьоров, которых Я знаю лично. Из Х5 их набралось штук десять (из департамента в 150+ человек). Мы выписали всех, чтоб были перед глазами.
Чтобы чем-то управлять, надо это измерять. Как только мы поняли, к чему мы хотим придти, нам необходимо научиться понимать, двигаемся ли мы в верном направлении.
Мы выделили навыки (признаки в датасете), которые помогут отделять класс "синьоры" от "не-синьоров". В разрезе чего будем смотреть? Примерный список на выходе:
• Coding (Python, MLOps)
• SQL, Databases, Big Data
• Machine Learning
• ML System Design
• A/B Testing & Statistics
• People Management
• Self-Management (Discipline)
• Achievements, Authority
У нас есть цель, и есть критерии. Самое время определить, где находится наша цель.
Мы взяли список, взяли каждого синьора, и Я, опираясь на свои грубые субъективные прикидки, стал оценивать каждого в разрезе каждого навыка по шкале от 0 до 10. По каждому навыку оценки разнились, но медианный уровень был получен.
Сейчас, для себя, Я использую персентили. Например "60% в выступлениях" означает, что "Я думаю, что Я лучше, чем 60% из всех, кто выступает".
Итеративно:
- Честно оцениваем текущий уровень;
- Выявляем по каким навыкам наибольший пробел;
- Работаем над ошибками, учимся, ищем советов.
Каждое обновление снабжается кейсом, ссылкой или другим артефактом в комментариях к карточке, подтверждающим, что по этому навыку Я подрос.
#notion