Алгоритмы машинного обучения – это одни из самых популярных инструментов дата-аналитиков. Однако большинство нейронных сетей используются как black-box: люди даже не знают, как они работают. Например, нейросеть умеет классифицировать породы собак, но делает она это опираясь на знание, что одни породы чаще сфотографированы дома, а другие – на лужайке.



Как определить, опираясь на какие параметры работает нейросеть? Читаем в статье «Интерпретация моделей машинного обучения в python: shap» от Екатерины Скрипцовой, младшего аналитика ВКонтакте и ментора Karpov.Courses.