
Несколько месяцев назад мы проводили открытый вебинар про GLM, где знакомились с обобщенными линейными моделями. Это знание значительно улучшило уровень жизни при подборе правильного распределения.
Однако в реальном мире не существует истинно линейных взаимосвязей. Хотя для коротких промежутков данных допущение линейности иногда работает, на практике же легко могут попасться такие переменные, взаимосвязи между которыми нельзя анализировать с использованием этого допущения.
На вебинаре «Шум и GAM: обобщённые аддитивные модели» мы узнаем:
● Как нелинейность взаимосвязи портит наши данные?
● Как моделировать нелинейные взаимосвязи, оставаясь в регрессионном контексте?
● Что такое лекало и какое отношение это имеет к вопросу?
● Какие похожие регрессионные методы могут встретиться в работе аналитика?
Занятие проведет Манаенков Александр, ментор KarpovCourses и выпускник кафедры психофизиологии факультета психологии МГУ.
Ждем всех в этот четверг, 3 декабря, в 20:00
Запись по ссылке
Однако в реальном мире не существует истинно линейных взаимосвязей. Хотя для коротких промежутков данных допущение линейности иногда работает, на практике же легко могут попасться такие переменные, взаимосвязи между которыми нельзя анализировать с использованием этого допущения.
На вебинаре «Шум и GAM: обобщённые аддитивные модели» мы узнаем:
● Как нелинейность взаимосвязи портит наши данные?
● Как моделировать нелинейные взаимосвязи, оставаясь в регрессионном контексте?
● Что такое лекало и какое отношение это имеет к вопросу?
● Какие похожие регрессионные методы могут встретиться в работе аналитика?
Занятие проведет Манаенков Александр, ментор KarpovCourses и выпускник кафедры психофизиологии факультета психологии МГУ.
Ждем всех в этот четверг, 3 декабря, в 20:00
Запись по ссылке